{"title":"An efficient glomerular object locator for renal whole slide images using proposal-free network and dynamic scale evaluation method","authors":"Xueyu Liu, Ming Li, Yongfei Wu, Yilin Chen, Fang Hao, Daoxiang Zhou, Chen Wang, Chuan-lian Ma, Guangze Shi, Xiaoshuang Zhou","doi":"10.3233/aic-210073","DOIUrl":null,"url":null,"abstract":"In the diagnosis of chronic kidney disease, glomerulus as the blood filter provides important information for an accurate disease diagnosis. Thus automatic localization of the glomeruli is the necessary groundwork for future auxiliary kidney disease diagnosis, such as glomerular classification and area measurement. In this paper, we propose an efficient glomerular object locator in kidney whole slide image(WSI) based on proposal-free network and dynamic scale evaluation method. In the training phase, we construct an intensive proposal-free network which can learn efficiently the fine-grained features of the glomerulus. In the evaluation phase, a dynamic scale evaluation method is utilized to help the well-trained model find the most appropriate evaluation scale for each high-resolution WSI. We collect and digitalize 1204 renal biopsy microscope slides containing more than 41000 annotated glomeruli, which is the largest number of dataset to our best knowledge. We validate the each component of the proposed locator via the ablation study. Experimental results confirm that the proposed locator outperforms recently proposed approaches and pathologists by comparing F 1 and run time in localizing glomeruli from WSIs at a resolution of 0.25 μm/pixel and thus achieves state-of-the-art performance. Particularly, the proposed locator can be embedded into the renal intelligent auxiliary diagnosis system for renal clinical diagnosis by localizing glomeruli in high-resolution WSIs effectively.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"65 1","pages":"245-258"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-210073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
In the diagnosis of chronic kidney disease, glomerulus as the blood filter provides important information for an accurate disease diagnosis. Thus automatic localization of the glomeruli is the necessary groundwork for future auxiliary kidney disease diagnosis, such as glomerular classification and area measurement. In this paper, we propose an efficient glomerular object locator in kidney whole slide image(WSI) based on proposal-free network and dynamic scale evaluation method. In the training phase, we construct an intensive proposal-free network which can learn efficiently the fine-grained features of the glomerulus. In the evaluation phase, a dynamic scale evaluation method is utilized to help the well-trained model find the most appropriate evaluation scale for each high-resolution WSI. We collect and digitalize 1204 renal biopsy microscope slides containing more than 41000 annotated glomeruli, which is the largest number of dataset to our best knowledge. We validate the each component of the proposed locator via the ablation study. Experimental results confirm that the proposed locator outperforms recently proposed approaches and pathologists by comparing F 1 and run time in localizing glomeruli from WSIs at a resolution of 0.25 μm/pixel and thus achieves state-of-the-art performance. Particularly, the proposed locator can be embedded into the renal intelligent auxiliary diagnosis system for renal clinical diagnosis by localizing glomeruli in high-resolution WSIs effectively.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.