Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network

M. Brinkhuis, Á. Kristjánsson, B. Harvey, J. Brascamp
{"title":"Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network","authors":"M. Brinkhuis, Á. Kristjánsson, B. Harvey, J. Brascamp","doi":"10.1093/cercor/bhz238","DOIUrl":null,"url":null,"abstract":"Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"43 1","pages":"2267 - 2280"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhz238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.
注意转移启动的时间特征反映在额顶叶注意网络的BOLD反应模式上
注意转移的启动涉及到当目标位置或目标特征重复时搜索RTs的减少。我们使用功能性磁共振成像来研究这种注意启动的神经基础,特别关注其在试验序列中的时间特征。我们首先复制了之前的研究结果,表明重复的目标颜色和目标位置都会导致包括枕叶、顶叶和额叶皮质的皮质网络中的血氧水平依赖(BOLD)信号减少:lag-1重复抑制。虽然这种lag-1抑制可以有多种解释,但从行为上讲,注意启动的影响会进一步扩大,过去搜索试验的影响会在多个后续试验中逐渐衰减。我们的研究结果表明,额顶叶网络中显示lag-1抑制的相同区域也显示出长期的BOLD减少,这种减少在几次试验中逐渐减少,与过去目标特性在试验中的行为影响的衰减保持同步。皮层BOLD和搜索RT减少的跨试验模式之间的明显相似,提供了强有力的证据,证明这些皮层区域在注意启动中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信