Schottky’s forgotten step to the Ising model

IF 0.8 4区 物理与天体物理 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Reinhard Folk, Yurij Holovatch
{"title":"Schottky’s forgotten step to the Ising model","authors":"Reinhard Folk,&nbsp;Yurij Holovatch","doi":"10.1140/epjh/s13129-022-00041-0","DOIUrl":null,"url":null,"abstract":"<div><p>A longstanding problem in natural science and later in physics was the understanding of the existence of ferromagnetism and its disappearance under heating to high temperatures. Although a qualitative description was possible by the Curie–Weiss theory, it was obvious that a microscopic model was necessary to explain the tendency of the elementary magnetons to prefer parallel ordering at low temperatures. Such a model was proposed in 1922 by Schottky within the old Bohr–Sommerfeld quantum mechanics and claimed to explain the high values of the Curie temperatures of certain ferromagnets. Based on this idea Ising formulated a new model for ferromagnetism in solids. Simultaneously the old quantum mechanics was replaced by new concepts of Heisenberg and Schrödinger and the discovery of spin. Thus Schottky’s idea was outperformed and finally replaced in 1928 by Heisenberg exchange interaction. This led to a reformulation of Ising’s model by Pauli at the Solvay conference in 1930. Nevertheless one might consider Schottky’s idea as a forerunner of this development explaining and asserting that the main point is the Coulomb energy leading to the essential interaction of neighboring elementary magnets.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjh/s13129-022-00041-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-022-00041-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

A longstanding problem in natural science and later in physics was the understanding of the existence of ferromagnetism and its disappearance under heating to high temperatures. Although a qualitative description was possible by the Curie–Weiss theory, it was obvious that a microscopic model was necessary to explain the tendency of the elementary magnetons to prefer parallel ordering at low temperatures. Such a model was proposed in 1922 by Schottky within the old Bohr–Sommerfeld quantum mechanics and claimed to explain the high values of the Curie temperatures of certain ferromagnets. Based on this idea Ising formulated a new model for ferromagnetism in solids. Simultaneously the old quantum mechanics was replaced by new concepts of Heisenberg and Schrödinger and the discovery of spin. Thus Schottky’s idea was outperformed and finally replaced in 1928 by Heisenberg exchange interaction. This led to a reformulation of Ising’s model by Pauli at the Solvay conference in 1930. Nevertheless one might consider Schottky’s idea as a forerunner of this development explaining and asserting that the main point is the Coulomb energy leading to the essential interaction of neighboring elementary magnets.

Abstract Image

肖特基在伊辛模型中被遗忘的一步
在自然科学和后来的物理学中,一个长期存在的问题是对铁磁性的存在及其在加热到高温下消失的理解。虽然居里-魏斯理论可以对这一现象进行定性描述,但很明显,需要一个微观模型来解释基本磁子在低温下倾向于平行有序的现象。1922年,肖特基在旧的玻尔-索默菲尔德量子力学中提出了这样一个模型,并声称可以解释某些铁磁体的高居里温度。在此基础上,伊辛提出了固体铁磁性的新模型。同时,旧的量子力学被海森堡和Schrödinger的新概念以及自旋的发现所取代。因此,肖特基的想法被超越了,并最终在1928年被海森堡交换相互作用所取代。这导致了泡利在1930年索尔维会议上对伊辛模型的重新表述。然而,人们可以把肖特基的想法看作是这一发展的先驱,它解释并断言,主要的一点是库仑能导致邻近基本磁体的基本相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal H
The European Physical Journal H HISTORY & PHILOSOPHY OF SCIENCE-PHYSICS, MULTIDISCIPLINARY
CiteScore
1.60
自引率
10.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works. The scope explicitly includes: - Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics. - Annotated and/or contextual translations of relevant foreign-language texts. - Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信