Formulation Development and Evaluation of Fast Disintegrating Sustained Release Pellets Containing Verapamil Hydrochloride Tablets by Fluidized Bed Processor
{"title":"Formulation Development and Evaluation of Fast Disintegrating Sustained Release Pellets Containing Verapamil Hydrochloride Tablets by Fluidized Bed Processor","authors":"Jagruti J. Pansare, R. K. Surawase","doi":"10.52711/2231-5659.2021.00041","DOIUrl":null,"url":null,"abstract":"This study aimed to developed novel fast disintegrating sustained release pellets containing tablet by using Fluidized Bed processor. Verapamil HCl used as a model drug for the formulation. Fluidized bed processor was used for coating of drug and polymer on the sugar spheres. To overcome the problem of swallowing for paediatric, geriatric, psychiatric, bedridden patients, uncooperative patients or for active patients who are busy and travelling and may not access to we aim to formulate the fast-disintegrating tablet. The superdisintigrant are commonly use like cross povidone, sodium starch glycolate which disintegrate tablet rapidly. It is assumed that, after the disintegration of tablets, pellets within tablets which are reside in GIT for several hours and gradually released a drug in controlled way. Eudragit RS 30D and ethyl cellulose were used as a sustained release polymer. Coating of spheres with sustained release film is achieved by bottom spray processor of FBP. Proper pellets coating film thickness, and concentration of polymers’, ensure obtaining desirable VH release profile for extended period of time, was defined. X composition of tablet with pellets were examined in order to obtained formulation, from which VH release would mostly appropriate pellets before compressing. Compression of pellets into tablet, being a modern technological process than enclosing them into hard gelatine capsule. The optimized batch evaluated by studied the effect of compression force, tablet hardness and friability and drug release from the pellets by sustained release manner.","PeriodicalId":8531,"journal":{"name":"Asian Journal of Research in Pharmaceutical Sciences","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/2231-5659.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to developed novel fast disintegrating sustained release pellets containing tablet by using Fluidized Bed processor. Verapamil HCl used as a model drug for the formulation. Fluidized bed processor was used for coating of drug and polymer on the sugar spheres. To overcome the problem of swallowing for paediatric, geriatric, psychiatric, bedridden patients, uncooperative patients or for active patients who are busy and travelling and may not access to we aim to formulate the fast-disintegrating tablet. The superdisintigrant are commonly use like cross povidone, sodium starch glycolate which disintegrate tablet rapidly. It is assumed that, after the disintegration of tablets, pellets within tablets which are reside in GIT for several hours and gradually released a drug in controlled way. Eudragit RS 30D and ethyl cellulose were used as a sustained release polymer. Coating of spheres with sustained release film is achieved by bottom spray processor of FBP. Proper pellets coating film thickness, and concentration of polymers’, ensure obtaining desirable VH release profile for extended period of time, was defined. X composition of tablet with pellets were examined in order to obtained formulation, from which VH release would mostly appropriate pellets before compressing. Compression of pellets into tablet, being a modern technological process than enclosing them into hard gelatine capsule. The optimized batch evaluated by studied the effect of compression force, tablet hardness and friability and drug release from the pellets by sustained release manner.