R. Hameed, Mohanad Mirdan Al-Ibraheemi, Falah Obayes Al-Khikani, N. Hasan, Huda Salman Almosawey, Atyaf Al-Asadi
{"title":"The possible role of immunoglobulin A monoclonal antibodies against COVID-19 infection","authors":"R. Hameed, Mohanad Mirdan Al-Ibraheemi, Falah Obayes Al-Khikani, N. Hasan, Huda Salman Almosawey, Atyaf Al-Asadi","doi":"10.4103/MTSM.MTSM_27_20","DOIUrl":null,"url":null,"abstract":"The coronavirus adheres to the nasal ciliated epithelium and replicates before transporting it to the nasopharynx. Immunopathogenesis and severity of coronavirus disease 2019 (COVID-19) are influenced by viral and immune system factors. COVID-19 infection is capable of producing an excessive immune reaction in the host that called a cytokine storm. The effect is extensive tissue destruction. Detection and monitoring of the immunopathological changes in patients with COVID-19 may provide potential targets for drug development and discovery, besides it is necessary for clinical management. Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces, including the upper respiratory tract, providing the first line of defense in mucosal immunity at the primary site of virus infection. Secretory IgA neutralizes the virus without causing inflammation because of its inability to fix and activate the complement cascade. Hence, it is suggested that induction of the mucosal immune response is more desirable to prevent respiratory infection to avoid unregulated inflammatory innate responses and impaired adaptive immune responses that may lead to locally and systemically harmful tissue damage. The advantage of IgA for protecting mucosal surfaces, such as the respiratory tract, relates to the presence of a specialized mechanism for transporting oligomeric IgA across epithelial surfaces.","PeriodicalId":32519,"journal":{"name":"Matrix Science Medica","volume":"75 1","pages":"96 - 102"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/MTSM.MTSM_27_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus adheres to the nasal ciliated epithelium and replicates before transporting it to the nasopharynx. Immunopathogenesis and severity of coronavirus disease 2019 (COVID-19) are influenced by viral and immune system factors. COVID-19 infection is capable of producing an excessive immune reaction in the host that called a cytokine storm. The effect is extensive tissue destruction. Detection and monitoring of the immunopathological changes in patients with COVID-19 may provide potential targets for drug development and discovery, besides it is necessary for clinical management. Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces, including the upper respiratory tract, providing the first line of defense in mucosal immunity at the primary site of virus infection. Secretory IgA neutralizes the virus without causing inflammation because of its inability to fix and activate the complement cascade. Hence, it is suggested that induction of the mucosal immune response is more desirable to prevent respiratory infection to avoid unregulated inflammatory innate responses and impaired adaptive immune responses that may lead to locally and systemically harmful tissue damage. The advantage of IgA for protecting mucosal surfaces, such as the respiratory tract, relates to the presence of a specialized mechanism for transporting oligomeric IgA across epithelial surfaces.