{"title":"Dynamics of the non-autonomous stochastic p-Laplacian parabolic problems on unbounded thin domains","authors":"Zhengguo Pu, Dingshi Li","doi":"10.1063/5.0154808","DOIUrl":null,"url":null,"abstract":"This paper focuses on the dynamics of the non-autonomous stochastic p-Laplacian parabolic problems defined on unbounded thin domains. We first show that the tails of solutions of the equation are uniformly small outside a bounded domain, which is utilized to overcome the non-compactness of Sobolev embeddings on unbounded domains. We then prove the existence and uniqueness of random attractors for the equations defined on (n + 1)-dimensional unbounded thin domains and further establish the upper semi-continuity of attractors as the thin domains collapse onto the space Rn.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0154808","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the dynamics of the non-autonomous stochastic p-Laplacian parabolic problems defined on unbounded thin domains. We first show that the tails of solutions of the equation are uniformly small outside a bounded domain, which is utilized to overcome the non-compactness of Sobolev embeddings on unbounded domains. We then prove the existence and uniqueness of random attractors for the equations defined on (n + 1)-dimensional unbounded thin domains and further establish the upper semi-continuity of attractors as the thin domains collapse onto the space Rn.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.