{"title":"A Cooperative Approach to Extend Cellular Coverage via D2D Architecture based on OLSR Protocol","authors":"Youssef Lmoumen, Y. Ruichek, R. Touahni","doi":"10.5121/ijcnc.2020.12506","DOIUrl":null,"url":null,"abstract":"The access part of all cellular network’s generation suffers from common concerns related to dead spots (zones that are not covered by the network) and hot spots (zones where the number of users is higher compared to network resources). During the last decade, lots of research proposals have tried to overcome cellular problems through multi-hop D2D architecture, which is a new paradigm allowing the direct communication between devices in cellular network to enhance network performances and improve user QoS. In this paper, we propose a multi-hop D2D architecture based on the OLSR protocol to extend cellular coverage. Cell-OLSR, which is the proposed adaptation of OLSR for our architecture, allows the exchange of cellular parameters between nodes to choose the best proxy device to forward data to the cellular base station (BS).","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"279 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijcnc.2020.12506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The access part of all cellular network’s generation suffers from common concerns related to dead spots (zones that are not covered by the network) and hot spots (zones where the number of users is higher compared to network resources). During the last decade, lots of research proposals have tried to overcome cellular problems through multi-hop D2D architecture, which is a new paradigm allowing the direct communication between devices in cellular network to enhance network performances and improve user QoS. In this paper, we propose a multi-hop D2D architecture based on the OLSR protocol to extend cellular coverage. Cell-OLSR, which is the proposed adaptation of OLSR for our architecture, allows the exchange of cellular parameters between nodes to choose the best proxy device to forward data to the cellular base station (BS).