G. Nagalakshmi, I.M. Nandeesh, B. Yallur, V. Adimule, S. Batakurki
{"title":"Synthesis and Optical Properties of Copper Terephthalate Metal Organic Frame Works","authors":"G. Nagalakshmi, I.M. Nandeesh, B. Yallur, V. Adimule, S. Batakurki","doi":"10.4028/p-fdqs03","DOIUrl":null,"url":null,"abstract":"Two new copper-based metal organic frame work (Cu-MOF21 and CU-MOF-22) was synthesized using bromo malonaldehyde and terephthalic an amino terephthalic acid. They synthesized CU-MOFs were characterized by FT-IR, UV-Visible spectroscopy. The XRD diffraction pattern indicated 2 θ at 17.3° and 26.8°. The Tauc’s method was employed to calculate the band gap of Cu-MOFs and was found that Cu-MOFS-21 exhibited 3.14 eV and Cu-MOF-22 with average bandgap energy at 3.61 eV attributed to the ligand-metal charge transfer. The results indicate that both Cu-MOFs can be further modified by suitable dopants to enhance the conductivity and reduce the band gap energy. Keywords: Metal organic frameworks, Copper metal, Bandgap energy, photoluminescence,","PeriodicalId":50368,"journal":{"name":"Industrial and Engineering Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial and Engineering Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-fdqs03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Two new copper-based metal organic frame work (Cu-MOF21 and CU-MOF-22) was synthesized using bromo malonaldehyde and terephthalic an amino terephthalic acid. They synthesized CU-MOFs were characterized by FT-IR, UV-Visible spectroscopy. The XRD diffraction pattern indicated 2 θ at 17.3° and 26.8°. The Tauc’s method was employed to calculate the band gap of Cu-MOFs and was found that Cu-MOFS-21 exhibited 3.14 eV and Cu-MOF-22 with average bandgap energy at 3.61 eV attributed to the ligand-metal charge transfer. The results indicate that both Cu-MOFs can be further modified by suitable dopants to enhance the conductivity and reduce the band gap energy. Keywords: Metal organic frameworks, Copper metal, Bandgap energy, photoluminescence,