Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.

Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao
{"title":"Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform.","authors":"Yujue Li, Fei Xue, Bingxuan Li, Yilin Yang, Zirui Fan, Juan Shu, Xiaochen Yang, Xiyao Wang, Jinjie Lin, Carlos Copana, Bingxin Zhao","doi":"10.1101/2023.04.28.538585","DOIUrl":null,"url":null,"abstract":"<p><p>As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.</p>","PeriodicalId":17203,"journal":{"name":"Journal of The American Dietetic Association","volume":"32 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Dietetic Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.28.538585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

利用 BIGA 云计算平台分析 GWAS 摘要统计中的双变量跨性状遗传结构。
随着大规模生物库提供越来越多的深度表型和基因组数据,全基因组关联研究(GWAS)正在迅速揭示各种复杂性状和疾病背后的遗传结构。全基因组关联研究出版物通常会公开其摘要级数据(全基因组关联研究摘要统计),以便进一步探索从不同研究和队列中收集的表型之间的遗传重叠。然而,系统分析数千种表型的高维 GWAS 摘要统计在逻辑上具有挑战性,在计算上要求也很高。在本文中,我们介绍了 BIGA ( https://bigagwas.org/ ),该网站旨在提供统一的数据分析管道和处理过的数据资源,用于使用 GWAS 摘要统计进行跨性状遗传结构分析。我们开发了一个在云计算平台上实现统计遗传学工具的框架,并结合了广泛的 GWAS 数据资源。通过 BIGA,用户可以上传数据、提交作业和分享结果,为研究界提供了一个整合 GWAS 数据和产生新见解的便捷工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信