S. Majumder, Mohna Bandyopadhyay, Sandip Pal, D. Mukhopadhyay
{"title":"Ameliorating effect of quercetin against UV radiation-induced damage in Drosophila melanogaster","authors":"S. Majumder, Mohna Bandyopadhyay, Sandip Pal, D. Mukhopadhyay","doi":"10.5281/ZENODO.3588543","DOIUrl":null,"url":null,"abstract":"Quercetin is a plant flavonoid found in various fruits, leaves such as tea, vegetables and has been extensively studied due to its antioxidative, anticancer, anti-inflammatory and anti-neurodegenarative effects. UV radiation is harmful for human being as it may cause several complications such as skin cancer. Fruit fly (Drosophila sp.) has long been used as an arthropod model for genetics related studies. In the present study, the protective effect of quercetin is evaluated against UV-C radiation induced damage using Drosophila melanogaster. Pre-treatment with quercetin (10 µM) recovered the shortened lifespan caused by UV radiation and has also increased eclosion rate and the dose of quercetin is lower than the previously reported doses of other flavonoids. Flies subjected to moderate dose of UV radiation showed distinct abnormal characters such as incomplete abdominal pigmentation, curly wings or outstretched wings, whereas quercetin pretreatment showed no such abnormal characters or mutant phenotypes. There is a considerable amount of change in the eclosed adult fly size, pupal size and pupal migration distance as well. Gel electrophoresis study of salivary gland DNA of D. melanogaster demonstrates the efficacy of quercetin in conferring protection to DNA against UV radiation-induced damage. Therefore, it can be concluded that quercetin may act as an effective protective agent against UV radiation-induced damage. \nDOI: http://dx.doi.org/10.5281/zenodo.3588543","PeriodicalId":11771,"journal":{"name":"European Journal of Biological Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Biological Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.3588543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Quercetin is a plant flavonoid found in various fruits, leaves such as tea, vegetables and has been extensively studied due to its antioxidative, anticancer, anti-inflammatory and anti-neurodegenarative effects. UV radiation is harmful for human being as it may cause several complications such as skin cancer. Fruit fly (Drosophila sp.) has long been used as an arthropod model for genetics related studies. In the present study, the protective effect of quercetin is evaluated against UV-C radiation induced damage using Drosophila melanogaster. Pre-treatment with quercetin (10 µM) recovered the shortened lifespan caused by UV radiation and has also increased eclosion rate and the dose of quercetin is lower than the previously reported doses of other flavonoids. Flies subjected to moderate dose of UV radiation showed distinct abnormal characters such as incomplete abdominal pigmentation, curly wings or outstretched wings, whereas quercetin pretreatment showed no such abnormal characters or mutant phenotypes. There is a considerable amount of change in the eclosed adult fly size, pupal size and pupal migration distance as well. Gel electrophoresis study of salivary gland DNA of D. melanogaster demonstrates the efficacy of quercetin in conferring protection to DNA against UV radiation-induced damage. Therefore, it can be concluded that quercetin may act as an effective protective agent against UV radiation-induced damage.
DOI: http://dx.doi.org/10.5281/zenodo.3588543