O. Fomin, A. Lovska, D. Ivanchenko, S. Zinchenko, V. Píštěk
{"title":"Study of Loading of the Load-Bearing Structure of Hopper Wagons on Y25 Bogies","authors":"O. Fomin, A. Lovska, D. Ivanchenko, S. Zinchenko, V. Píštěk","doi":"10.21303/2461-4262.2021.001686","DOIUrl":null,"url":null,"abstract":"To increase the efficiency of using railway transport, the possibility of using new designs of bogies, for example, Y25 under \"wide gauge\" wagons was considered. In order to substantiate the proposed solution, mathematical modeling of the dynamic loading of the hopper wagon Y25 bogies was carried out. A hopper wagon for the transportation of pellets and hot sinter model 20-9749 built by the State Enterprise \"Ukrspetsvagon\" (Ukraine) was chosen as a prototype. The simulation results showed that the use of Y25 bogies for hopper wagons allows to reduce the acceleration of its load-bearing structure, in comparison with the use of conventional 18100 bogies, by 36 %. Other performance indicators are also significantly improved. \nThe use of Y25 bogies for hopper wagons with actual parameters allows to reduce the acceleration of its load-bearing structure, in comparison with the use of conventional 18100 bogies, by 28 %. \nThe determination of the main indicators of the strength of the bearing structure of the hopper wagon Y25 bogie was carried out. The calculation was carried out in the SolidWorks Simulation software package (CosmosWorks), (France), which implements the finite element method. The calculations showed that the maximum equivalent stresses in the load-bearing structure of a hopper wagon with nominal parameters are 17 % lower than the stress acting in the load-bearing structure of a wagon on bogies 18–100 V of the load-bearing structure of a hopper wagon with actual parameters, the maximum equivalent stresses are 12 % lower per voltage in the load-bearing structure on bogies 18100. \nThe conducted research will help to reduce the load on the load-bearing structures of hopper wagons in operation, improve the dynamics and strength indicators, as well as their service life","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2461-4262.2021.001686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To increase the efficiency of using railway transport, the possibility of using new designs of bogies, for example, Y25 under "wide gauge" wagons was considered. In order to substantiate the proposed solution, mathematical modeling of the dynamic loading of the hopper wagon Y25 bogies was carried out. A hopper wagon for the transportation of pellets and hot sinter model 20-9749 built by the State Enterprise "Ukrspetsvagon" (Ukraine) was chosen as a prototype. The simulation results showed that the use of Y25 bogies for hopper wagons allows to reduce the acceleration of its load-bearing structure, in comparison with the use of conventional 18100 bogies, by 36 %. Other performance indicators are also significantly improved.
The use of Y25 bogies for hopper wagons with actual parameters allows to reduce the acceleration of its load-bearing structure, in comparison with the use of conventional 18100 bogies, by 28 %.
The determination of the main indicators of the strength of the bearing structure of the hopper wagon Y25 bogie was carried out. The calculation was carried out in the SolidWorks Simulation software package (CosmosWorks), (France), which implements the finite element method. The calculations showed that the maximum equivalent stresses in the load-bearing structure of a hopper wagon with nominal parameters are 17 % lower than the stress acting in the load-bearing structure of a wagon on bogies 18–100 V of the load-bearing structure of a hopper wagon with actual parameters, the maximum equivalent stresses are 12 % lower per voltage in the load-bearing structure on bogies 18100.
The conducted research will help to reduce the load on the load-bearing structures of hopper wagons in operation, improve the dynamics and strength indicators, as well as their service life