A Direct Proof of Every Rough Set is a Soft Set

T. Herawan, M. M. Deris
{"title":"A Direct Proof of Every Rough Set is a Soft Set","authors":"T. Herawan, M. M. Deris","doi":"10.1109/AMS.2009.148","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is devoted to revealing interconnection between rough sets and soft sets. We use the constructive and descriptive approaches of rough set theory and present a direct proof that Pawlak’s and Iwinski’s rough sets can be considered as soft sets.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"519 1","pages":"119-124"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

The purpose of this paper is devoted to revealing interconnection between rough sets and soft sets. We use the constructive and descriptive approaches of rough set theory and present a direct proof that Pawlak’s and Iwinski’s rough sets can be considered as soft sets.
每个粗糙集的直接证明都是软集
本文的目的是揭示粗糙集和软集之间的相互联系。我们利用粗糙集理论的构造和描述方法,直接证明了Pawlak和Iwinski的粗糙集可以被认为是软集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信