A Hybrid Fuzzy Semi-supervised Learning Algorithm for Face Recognition

Xiaoning Song, Zi Liu
{"title":"A Hybrid Fuzzy Semi-supervised Learning Algorithm for Face Recognition","authors":"Xiaoning Song, Zi Liu","doi":"10.1109/RVSP.2013.32","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a hybrid fuzzy semi supervised learning algorithm (HFSA) for face recognition, which is based on the segregation of distinctive regions that include outlier instances and its counterparts. First, it achieves the distribution information of each sample that represented with fuzzy membership degree, and then the membership grade is incorporated into the redefinition of scatter matrices, as a result, the initial fuzzy classification of whole regular feature space is obtained. Second, a new semi-supervised fuzzy clustering algorithm is presented on the basis of the precise number of clusters and initial pattern centers that have been previously obtained in the pattern discovery stage, and then applied in order to perform the outlier instances classification, yielding the final pattern recognition. Experimental results conducted on the ORL and XM2VTS face databases demonstrate the effectiveness of the proposed method.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"58-60 1","pages":"111-114"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a hybrid fuzzy semi supervised learning algorithm (HFSA) for face recognition, which is based on the segregation of distinctive regions that include outlier instances and its counterparts. First, it achieves the distribution information of each sample that represented with fuzzy membership degree, and then the membership grade is incorporated into the redefinition of scatter matrices, as a result, the initial fuzzy classification of whole regular feature space is obtained. Second, a new semi-supervised fuzzy clustering algorithm is presented on the basis of the precise number of clusters and initial pattern centers that have been previously obtained in the pattern discovery stage, and then applied in order to perform the outlier instances classification, yielding the final pattern recognition. Experimental results conducted on the ORL and XM2VTS face databases demonstrate the effectiveness of the proposed method.
人脸识别的混合模糊半监督学习算法
在本文中,我们开发了一种用于人脸识别的混合模糊半监督学习算法(HFSA),该算法基于包含离群值及其对应值的独特区域的分离。首先获取以模糊隶属度表示的每个样本的分布信息,然后将隶属度纳入散点矩阵的重定义中,从而得到整个规则特征空间的初始模糊分类。其次,基于在模式发现阶段获得的精确聚类数量和初始模式中心,提出了一种新的半监督模糊聚类算法,并将其应用于离群实例分类,从而得到最终的模式识别。在ORL和XM2VTS人脸数据库上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信