{"title":"The effect of triiodothyronine on the hippocampal long-term potentiation in an animal model of the Alzheimer's disease: The role of BDNF and reelin","authors":"Sahreh Shabani , Yaghoob Farbood , Alireza Sarkaki , Seyyed Ali Mard , Akram Ahangarpour , Layasadat Khorsandi","doi":"10.1016/j.npbr.2019.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Converging evidence, propose a close relation between thyroid function and Alzheimer’s disease (AD). We have assessed the effect of subcutaneous and intrahippocampal administrations of triiodothyronine (T3) on the electrophysiological activity (hippocampal long-term potentiation (LTP)), the levels of thyroid hormones (THs) and TSH, the protein expression of BDNF and reelin as well as histological changes in the hippocampus of AD rats. Beta-amyloid (Aβ) plus ibotenic acid (Ibo) were injected intrahippocampally and rats were treated with T3 or saline. The hippocampal levels of THs and the protein expression are measured by ELISA kits and Western blotting method respectively. Results have been shown that T3 (S.C., and I. H), significantly reversed the amplitude and the slope impairment of the DG neurons, induced by Aβ. The hippocampal levels of THs, TSH and two protein expression were significantly decreased (p < 0.001) in AD animals and increased significantly in AD rats that have received T3 (S. C and I. H) (p < 0.01). Formation of amyloid plaques was declined in AD rats treated with T3. In conclusion, both S.C., and I.H. injections of T3 is effective in preventing the disruption of synaptic plasticity induced by Aβ. This positive effect of T3 may be mediated through a regulation of proteins expression and the hippocampal level of THs. The best effect was observed in I.H. microinjection of T3.</p></div>","PeriodicalId":49756,"journal":{"name":"Neurology Psychiatry and Brain Research","volume":"33 ","pages":"Pages 82-88"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.npbr.2019.07.004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology Psychiatry and Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0941950019300430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6
Abstract
Converging evidence, propose a close relation between thyroid function and Alzheimer’s disease (AD). We have assessed the effect of subcutaneous and intrahippocampal administrations of triiodothyronine (T3) on the electrophysiological activity (hippocampal long-term potentiation (LTP)), the levels of thyroid hormones (THs) and TSH, the protein expression of BDNF and reelin as well as histological changes in the hippocampus of AD rats. Beta-amyloid (Aβ) plus ibotenic acid (Ibo) were injected intrahippocampally and rats were treated with T3 or saline. The hippocampal levels of THs and the protein expression are measured by ELISA kits and Western blotting method respectively. Results have been shown that T3 (S.C., and I. H), significantly reversed the amplitude and the slope impairment of the DG neurons, induced by Aβ. The hippocampal levels of THs, TSH and two protein expression were significantly decreased (p < 0.001) in AD animals and increased significantly in AD rats that have received T3 (S. C and I. H) (p < 0.01). Formation of amyloid plaques was declined in AD rats treated with T3. In conclusion, both S.C., and I.H. injections of T3 is effective in preventing the disruption of synaptic plasticity induced by Aβ. This positive effect of T3 may be mediated through a regulation of proteins expression and the hippocampal level of THs. The best effect was observed in I.H. microinjection of T3.
期刊介绍:
Neurology, Psychiatry & Brain Research publishes original papers and reviews in
biological psychiatry,
brain research,
neurology,
neuropsychiatry,
neuropsychoimmunology,
psychopathology,
psychotherapy.
The journal has a focus on international and interdisciplinary basic research with clinical relevance. Translational research is particularly appreciated. Authors are allowed to submit their manuscript in their native language as supplemental data to the English version.
Neurology, Psychiatry & Brain Research is related to the oldest German speaking journal in this field, the Centralblatt fur Nervenheilkunde, Psychiatrie und gerichtliche Psychopathologie, founded in 1878. The tradition and idea of previous famous editors (Alois Alzheimer and Kurt Schneider among others) was continued in modernized form with Neurology, Psychiatry & Brain Research. Centralblatt was a journal of broad scope and relevance, now Neurology, Psychiatry & Brain Research represents a journal with translational and interdisciplinary perspective, focusing on clinically oriented research in psychiatry, neurology and neighboring fields of neurosciences and psychology/psychotherapy with a preference for biologically oriented research including basic research. Preference is given for papers from newly emerging fields, like clinical psychoimmunology/neuroimmunology, and ideas.