Wei-Jie Cheng , Kuo-Hsiang Chuang , Yu-Ju Lo , Michael Chen , Yi-Jou Chen , Steve R. Roffler , Hsiu-O Ho , Shyr-Yi Lin , Ming-Thau Sheu
{"title":"Bispecific T-cell engagers non-covalently decorated drug-loaded PEGylated nanocarriers for cancer immunochemotherapy","authors":"Wei-Jie Cheng , Kuo-Hsiang Chuang , Yu-Ju Lo , Michael Chen , Yi-Jou Chen , Steve R. Roffler , Hsiu-O Ho , Shyr-Yi Lin , Ming-Thau Sheu","doi":"10.1016/j.jconrel.2022.03.015","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Immunotherapy is blooming in recent years. However, this therapy needs to overcome off-target effects, </span>cytokine release syndrome<span><span>, and low responses in the ‘cold’ tumor environment. Herein, various combinations of immunotherapies and chemotherapies were proposed to transform ‘cold’ tumors into ‘hot’ tumors to enhance the efficacy of immunotherapies. In this study, we prepared a biocompatible ganetespib (GSP)-loaded PEGylated </span>nanocarriers (NCs) with a thin-film method, which exhibited a small particle size (~220.6 nm), high drug loading (~5.8%), and good stability. We designed and produced the cluster of differentiation 3 (CD3)/programmed death ligand 1 (PD-L1)/methoxy-polyethylene glycol (mPEG) trispecific antibodies (TsAbs) as bispecific T-cell engagers (BiTEs) to non-covalently bind the GSP-NCs </span></span><em>via</em> anti-mPEG fragment and endowed the GSP-NCs with a targeting ability and immunotherapeutic potential to activate cytotoxic T cells. Decoration of the GSP-NCs with TsAbs (BiTEs-GSP-NCs) significantly promoted the cellular uptake and showed synergistic effects through respective anti-PD-L1 and anti-CD3 activation of T cell-mediated cytotoxicity. <em>In vivo</em><span> tumor-inhibition studies also showed that the BiTEs-GSP-NCs could inhibit tumor growth with the GSP chemodrug and increase T-cell infiltration. This study provides a promising drug delivery strategy for cancer immunochemotherapy.</span></p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"344 ","pages":"Pages 235-248"},"PeriodicalIF":11.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365922001250","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Immunotherapy is blooming in recent years. However, this therapy needs to overcome off-target effects, cytokine release syndrome, and low responses in the ‘cold’ tumor environment. Herein, various combinations of immunotherapies and chemotherapies were proposed to transform ‘cold’ tumors into ‘hot’ tumors to enhance the efficacy of immunotherapies. In this study, we prepared a biocompatible ganetespib (GSP)-loaded PEGylated nanocarriers (NCs) with a thin-film method, which exhibited a small particle size (~220.6 nm), high drug loading (~5.8%), and good stability. We designed and produced the cluster of differentiation 3 (CD3)/programmed death ligand 1 (PD-L1)/methoxy-polyethylene glycol (mPEG) trispecific antibodies (TsAbs) as bispecific T-cell engagers (BiTEs) to non-covalently bind the GSP-NCs via anti-mPEG fragment and endowed the GSP-NCs with a targeting ability and immunotherapeutic potential to activate cytotoxic T cells. Decoration of the GSP-NCs with TsAbs (BiTEs-GSP-NCs) significantly promoted the cellular uptake and showed synergistic effects through respective anti-PD-L1 and anti-CD3 activation of T cell-mediated cytotoxicity. In vivo tumor-inhibition studies also showed that the BiTEs-GSP-NCs could inhibit tumor growth with the GSP chemodrug and increase T-cell infiltration. This study provides a promising drug delivery strategy for cancer immunochemotherapy.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.