Damage mechanisms in copper-aluminum wirebond under high temperature operation

P. Lall, Shantanu Deshpande, L. Nguyen, M. Murtuza
{"title":"Damage mechanisms in copper-aluminum wirebond under high temperature operation","authors":"P. Lall, Shantanu Deshpande, L. Nguyen, M. Murtuza","doi":"10.1109/ITHERM.2014.6892412","DOIUrl":null,"url":null,"abstract":"Wire bonding is predominant mode of interconnect in electronics packaging. Traditionally material used for wire bonding is gold. But industry is slowly replacing gold wire bond by copper-aluminum wire bond because of the lower cost and better mechanical properties than gold, such as high strength, high thermal conductivity etc. Numerous studies have been done to analyze failure mechanism of Cu-Al wire bonds. Cu-Al interface is a predominant location for failure of the wirebond interconnects. In this paper, the use of intermetallic thickness as leading indicator-of-failure for prognostication of remaining useful life for Cu-Al wire bond interconnects has been studied. For analysis, 32 pin chip scale packages were used. Packages were aged isothermally at 200°C and 250°C for 10 days. Packages were withdrawn periodically after 24 hours and its IMC thickness was measured using SEM. The parts have been prognosticated for accrued damage and remaining useful life in current or anticipated future deployment environment. The presented methodology uses evolution of the IMC thickness in conjunction with the Levenberg-Marquardt Algorithm to identify accrued damage in wire bond subjected to thermal aging. The proposed method can be used for equivalency of damage accrued in Cu-Al parts subjected to multiple thermal aging environments.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"66 1","pages":"1171-1178"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wire bonding is predominant mode of interconnect in electronics packaging. Traditionally material used for wire bonding is gold. But industry is slowly replacing gold wire bond by copper-aluminum wire bond because of the lower cost and better mechanical properties than gold, such as high strength, high thermal conductivity etc. Numerous studies have been done to analyze failure mechanism of Cu-Al wire bonds. Cu-Al interface is a predominant location for failure of the wirebond interconnects. In this paper, the use of intermetallic thickness as leading indicator-of-failure for prognostication of remaining useful life for Cu-Al wire bond interconnects has been studied. For analysis, 32 pin chip scale packages were used. Packages were aged isothermally at 200°C and 250°C for 10 days. Packages were withdrawn periodically after 24 hours and its IMC thickness was measured using SEM. The parts have been prognosticated for accrued damage and remaining useful life in current or anticipated future deployment environment. The presented methodology uses evolution of the IMC thickness in conjunction with the Levenberg-Marquardt Algorithm to identify accrued damage in wire bond subjected to thermal aging. The proposed method can be used for equivalency of damage accrued in Cu-Al parts subjected to multiple thermal aging environments.
铜铝焊丝在高温下的损伤机理
线键合是电子封装中主要的互连方式。传统上用于金属丝粘合的材料是金。但是工业上正在慢慢地用铜铝线结合代替金丝结合,因为铜铝线结合成本更低,而且比金的机械性能更好,如高强度、高导热性等。大量的研究分析了铜铝线键的失效机理。Cu-Al界面是线键连接失效的主要部位。本文研究了用金属间厚度作为预测铜铝线键合互连剩余使用寿命的主要失效指标。为了进行分析,我们使用了32引脚芯片级封装。包装在200°C和250°C等温老化10天。24小时后定期取出包装,用扫描电镜测量其IMC厚度。对这些部件在当前或预期的未来部署环境中的累积损坏和剩余使用寿命进行了预测。所提出的方法使用IMC厚度的演变与Levenberg-Marquardt算法相结合来识别钢丝粘结在热老化下的累积损伤。该方法可用于Cu-Al零件在多种热老化环境下的损伤等效计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信