C. Jiang, H. Moutinho, B. To, C. Xiao, L. Simpson, M. Al‐Jassim
{"title":"Decay of Electrostatic Force of Dust Particles on Photovoltaic Modules","authors":"C. Jiang, H. Moutinho, B. To, C. Xiao, L. Simpson, M. Al‐Jassim","doi":"10.1109/PVSC40753.2019.8981221","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) energy yield loss due to solar module soiling has become increasingly important as solar module deployment is now at the hundreds of gigawatts scale and continues to grow rapidly. We have reported on direct measurements—using atomic force microscopy (AFM)—of strong electric-field-induced attraction and adhesion force (Fes) of dust particles onto solar panel that are 1 to 2 orders of magnitude stronger than the van der Waals and water capillary forces, corroborated by observing the increase in system voltage-induced soiling rate. Here, we report another characteristic of Fes on soiling—long lasting or slow decay after turning off the high voltage applied to solar panels. The Fes decay time varies in a wide time range of 1 to 10 hours, depending on two factors: 1) either/both the cell or/and particle were charged with high voltage before the voltages were turned off; and 2) how the cell was connected to the ground after the voltage was turned off—either connected through the power supply electronics, directly connected to the ground, or electrically floated. The Fes decay is understood in terms of 1) net electrical charge dissipations in both particle and cell, 2) thermal disordering of dipole polarization in the module glass dielectrics, and 3) charge redistribution by the electrostatic interaction of particle and module glass. This long-lasting Fes for hours can significantly affect the solar panel soiling after sunset, especially combined with water condensation.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"27 1","pages":"3119-3123"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8981221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) energy yield loss due to solar module soiling has become increasingly important as solar module deployment is now at the hundreds of gigawatts scale and continues to grow rapidly. We have reported on direct measurements—using atomic force microscopy (AFM)—of strong electric-field-induced attraction and adhesion force (Fes) of dust particles onto solar panel that are 1 to 2 orders of magnitude stronger than the van der Waals and water capillary forces, corroborated by observing the increase in system voltage-induced soiling rate. Here, we report another characteristic of Fes on soiling—long lasting or slow decay after turning off the high voltage applied to solar panels. The Fes decay time varies in a wide time range of 1 to 10 hours, depending on two factors: 1) either/both the cell or/and particle were charged with high voltage before the voltages were turned off; and 2) how the cell was connected to the ground after the voltage was turned off—either connected through the power supply electronics, directly connected to the ground, or electrically floated. The Fes decay is understood in terms of 1) net electrical charge dissipations in both particle and cell, 2) thermal disordering of dipole polarization in the module glass dielectrics, and 3) charge redistribution by the electrostatic interaction of particle and module glass. This long-lasting Fes for hours can significantly affect the solar panel soiling after sunset, especially combined with water condensation.