Effects of Pressure on Reusable Self-Assembled Microsphere Masks for Microsphere Photolithography

IF 1 Q4 ENGINEERING, MANUFACTURING
Chen Zhu, E. Kinzel
{"title":"Effects of Pressure on Reusable Self-Assembled Microsphere Masks for Microsphere Photolithography","authors":"Chen Zhu, E. Kinzel","doi":"10.1115/msec2022-85165","DOIUrl":null,"url":null,"abstract":"\n Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Microsphere photolithography (MPL) has shown promise for the low-cost large-scale manufacturing of infrared (IR) metasurfaces. One challenge of the technique is that the microsphere array needs to be in immediate proximity to the photoresist because of the near-filed effect of the photonic jet. This is typically accomplished by directly transferring the microsphere array onto the photoresist layer. The microspheres are then washed away during the development of the photoresist. While there may be a possibility of recovering, cleaning, and reusing the microspheres, this is not typically done. This work studies the self-assembly of the microspheres on a superstrate which can be reused as a contact mask. The microspheres are fixed to this superstrate to minimize debonding when they are brought into contact with the substrate. IR metasurfaces are fabricated and spectrally characterized. The resonant wavelength of IR metasurfaces is shown to be a good statistical metric for the variation of the patterned surface. The results indicate pressure between the substrate and superstrate is a critical factor in maintaining a minimum gap between the microspheres and photoresist. This work shows a way forward for mask-based microsphere photolithography and provides guidance for future microlens array-based photolithographic techniques.
压力对微球光刻中可重复使用自组装微球掩模的影响
微球光刻技术(MPL)显示出低成本大规模制造红外超表面的前景。该技术的一个挑战是,由于光子射流的近场效应,微球阵列需要直接靠近光刻胶。这通常是通过直接将微球阵列转移到光刻胶层来完成的。在光刻胶的显影过程中,微球被冲洗掉。虽然有可能对微球进行回收、清洗和再利用,但通常不会这样做。本工作研究了微球在可重复使用的接触面罩上的自组装。微球被固定在这种上覆层上,以最大限度地减少与基底接触时的脱粘。制备了红外超表面并对其进行了光谱表征。结果表明,红外超表面的共振波长是表征图案化表面变化的一个很好的统计度量。结果表明,衬底与上覆层之间的压力是保持微球与光刻胶之间最小间隙的关键因素。这项工作为基于掩模的微球光刻技术指明了前进的方向,并为未来基于微透镜阵列的光刻技术提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信