In Situ Formed Ruthenium(0) Nanoparticles Supported on TiO2 Catalyzed Hydrogen Generation from Aqueous Ammonia-Borane Solution at Room Temperature Under Air
{"title":"In Situ Formed Ruthenium(0) Nanoparticles Supported on TiO2 Catalyzed Hydrogen Generation from Aqueous Ammonia-Borane Solution at Room Temperature Under Air","authors":"Nihayet Konuş, Y. Karataş, M. Gulcan","doi":"10.1080/15533174.2014.988808","DOIUrl":null,"url":null,"abstract":"Herein, the authors report that TiO2 supported ruthenium nanoparticles (Ru(0)/TiO2) during hydrolysis starting with RuCl3/TiO2 precatalyst act as highly active, long-lived, and reusable nanocatalyst in the hydrogen generation from the hydrolysis of ammonia-borane (NH3BH3) at room temperature. The resulting Ru(0)/TiO2 catalyze hydrogen generation from the hydrolysis of ammonia-borane with an initial turnover frequency value of 200 min−1 at 25 ± 0.1°C. More importantly, Ru(0)/TiO2 are stable enough to be isolated and bottled as solid material, which can be reused as active catalyst under the identical conditions of the first run.","PeriodicalId":22118,"journal":{"name":"Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15533174.2014.988808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Herein, the authors report that TiO2 supported ruthenium nanoparticles (Ru(0)/TiO2) during hydrolysis starting with RuCl3/TiO2 precatalyst act as highly active, long-lived, and reusable nanocatalyst in the hydrogen generation from the hydrolysis of ammonia-borane (NH3BH3) at room temperature. The resulting Ru(0)/TiO2 catalyze hydrogen generation from the hydrolysis of ammonia-borane with an initial turnover frequency value of 200 min−1 at 25 ± 0.1°C. More importantly, Ru(0)/TiO2 are stable enough to be isolated and bottled as solid material, which can be reused as active catalyst under the identical conditions of the first run.