{"title":"Throttling Effect on the Performance and Emissions of a Multi-Cylinder Gasoline Fuelled Spark Ignition Engine","authors":"K. Hamada, M. Rahim, M. M. Rahman, R. A. Bakar","doi":"10.15282/ijame.19.4.2022.05.0779","DOIUrl":null,"url":null,"abstract":"The throttle mechanism, a regulatory technique of engine output, is accompanied by a loss of some energy. The effect of intake air throttling on the performance and emissions of a multi-cylinder spark ignition gasoline engine was experimentally investigated. The engine was coupled to a hydraulic dynamometer equipped with a customized cooling system for both the engine and dynamometer. Experimental tests were performed for various engine speeds and air-fuel ratios at the WOT and POT conditions with optimized ignition timing. The acquired results recorded that a better engine operation could be achieved with WOT in terms of bmep, bsfc, ηb, CO, CO2 and UHC compared to POT. At the same time, the worst trend at WOT was noticed for the NOx concentration due to the higher conversion efficiency of fuel combustion. In terms of engine speed for both WOT and POT conditions, operating at 3000 rpm represents the minima of ϕ, bsfc, CO and UHC; and the maxima of ηb, CO2 and NOx with some fluctuation on both sides of this point. Maximum recorded values of ηb were about 30.55% and 28. 55%, while the minimum values of bsfc were about 274 and 293 g/kW.h for the WOT and POT conditions, respectively. The maximum bmep was obtained at 2500 rpm at WOT and POT conditions with values of about 940 kPa and 904 kPa, respectively. Maximum recorded values of NOx were about 1525 and 977 ppm for the WOT and POT conditions, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.4.2022.05.0779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The throttle mechanism, a regulatory technique of engine output, is accompanied by a loss of some energy. The effect of intake air throttling on the performance and emissions of a multi-cylinder spark ignition gasoline engine was experimentally investigated. The engine was coupled to a hydraulic dynamometer equipped with a customized cooling system for both the engine and dynamometer. Experimental tests were performed for various engine speeds and air-fuel ratios at the WOT and POT conditions with optimized ignition timing. The acquired results recorded that a better engine operation could be achieved with WOT in terms of bmep, bsfc, ηb, CO, CO2 and UHC compared to POT. At the same time, the worst trend at WOT was noticed for the NOx concentration due to the higher conversion efficiency of fuel combustion. In terms of engine speed for both WOT and POT conditions, operating at 3000 rpm represents the minima of ϕ, bsfc, CO and UHC; and the maxima of ηb, CO2 and NOx with some fluctuation on both sides of this point. Maximum recorded values of ηb were about 30.55% and 28. 55%, while the minimum values of bsfc were about 274 and 293 g/kW.h for the WOT and POT conditions, respectively. The maximum bmep was obtained at 2500 rpm at WOT and POT conditions with values of about 940 kPa and 904 kPa, respectively. Maximum recorded values of NOx were about 1525 and 977 ppm for the WOT and POT conditions, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.