Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur Menggunakan K-Nearest Neighbor

IF 0.7 4区 历史学 0 ARCHAEOLOGY
Niske Elmy Paulina, Zilvanhisna Emka Fitri, Abd. Madjid, Arizal Mujibtamala Nanda Imron
{"title":"Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur Menggunakan K-Nearest Neighbor","authors":"Niske Elmy Paulina, Zilvanhisna Emka Fitri, Abd. Madjid, Arizal Mujibtamala Nanda Imron","doi":"10.26760/mindjournal.v6i2.144-154","DOIUrl":null,"url":null,"abstract":"AbstrakTomat (Lycopersicum esculentum Mill.) merupakan satu komoditas unggulan pertanian karena penjualan jangka panjangnya baik. Menurunnya jumlah produktivitas dan mutu tomat disebabkan oleh curah hujan yang tinggi, cuaca dan budidaya yang tidak baik sehingga buah tomat menjadi busuk, retak, dan timbul bercak. Penyuluhan terkait peningkatan mutu tomat dinilai kurang efektif sehingga dibutuhkan sebuah sistem identifikasi kerusakan mutu buah tomat yang mampu memberikan edukasi kepada petani. Penelitian ini adalah pengembangan penelitian sebelumnya, untuk mendapatkan citra segmentasi dan ekstraksi fitur digunakan penggunaan contrast stretching dan deteksi tepi sobel. Namun kedua teknik tersebut diganti penggunaan operasi citra negatif. Didapatkan fitur yang optimal adalah gabungan fitur morfologi dan pada masing-masing sudut berdasarkan seleksi fitur. Persentasi akurasi metode KNN pada pelatihan sebesar 86.6% sedangkan akurasi pengujiannya sebesar 70%.Kata kunci: kerusakan mutu, tomat, seleksi fitur, K-Nearest NeighborAbstractTomato (Lycopersicum esculentum Mill.) is one of the leading agricultural commodities because of its good long-term sales. The decrease in the amount of productivity and quality of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and have spots. Counseling related to improving the quality of tomatoes is considered ineffective so that a system for identifying damage to the quality of tomatoes is needed that is able to provide education to farmers. This study is a development of previous research, to obtain segmented images and feature extraction using contrast stretching and sobel edge detection. However, both techniques were replaced by using negative image operations. The optimal feature is a combination of morphological features and correlations at each angle based on feature selection. The percentage of accuracy of the KNN method in training is 87%, while the accuracy in the testing is 70%.Keywords: quality damage, tomato, feature selection, K-Nearest Neighbo","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"119 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v6i2.144-154","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

AbstrakTomat (Lycopersicum esculentum Mill.) merupakan satu komoditas unggulan pertanian karena penjualan jangka panjangnya baik. Menurunnya jumlah produktivitas dan mutu tomat disebabkan oleh curah hujan yang tinggi, cuaca dan budidaya yang tidak baik sehingga buah tomat menjadi busuk, retak, dan timbul bercak. Penyuluhan terkait peningkatan mutu tomat dinilai kurang efektif sehingga dibutuhkan sebuah sistem identifikasi kerusakan mutu buah tomat yang mampu memberikan edukasi kepada petani. Penelitian ini adalah pengembangan penelitian sebelumnya, untuk mendapatkan citra segmentasi dan ekstraksi fitur digunakan penggunaan contrast stretching dan deteksi tepi sobel. Namun kedua teknik tersebut diganti penggunaan operasi citra negatif. Didapatkan fitur yang optimal adalah gabungan fitur morfologi dan pada masing-masing sudut berdasarkan seleksi fitur. Persentasi akurasi metode KNN pada pelatihan sebesar 86.6% sedangkan akurasi pengujiannya sebesar 70%.Kata kunci: kerusakan mutu, tomat, seleksi fitur, K-Nearest NeighborAbstractTomato (Lycopersicum esculentum Mill.) is one of the leading agricultural commodities because of its good long-term sales. The decrease in the amount of productivity and quality of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and have spots. Counseling related to improving the quality of tomatoes is considered ineffective so that a system for identifying damage to the quality of tomatoes is needed that is able to provide education to farmers. This study is a development of previous research, to obtain segmented images and feature extraction using contrast stretching and sobel edge detection. However, both techniques were replaced by using negative image operations. The optimal feature is a combination of morphological features and correlations at each angle based on feature selection. The percentage of accuracy of the KNN method in training is 87%, while the accuracy in the testing is 70%.Keywords: quality damage, tomato, feature selection, K-Nearest Neighbo
根据使用K-Nearest邻居的特性选择对西红柿质量的分类
算盘是一种很好的农业商品,因为它的长期销售很好。西红柿的生产力和质量的下降是由于降雨、天气和耕作的不佳,导致它的果实腐烂、破裂和出现斑点。有关番茄质量提高的教育被认为是无效的,因此需要一种能够教育农民的番茄果实质量受损的识别系统。本研究是前一项研究的发展,目的是获取图像分割和提取功能使用对比stretching和索贝尔边缘检测。但这两种技术都取代了负面操作的使用。获得最佳特性是形态特征的组合和每个角度的特征特征选择。KNN方法在培训中的百分比是86.6%,而测试准确率是70%。关键词:质量破坏、西红柿、特色选择、K-Nearest邻邻番茄(Lycopersicum esculentum Mill)是现代农业商品的一部分,因为它是一种很好的销售工具。西红柿的产量和质量是由高度的rainfall、恶劣的天气和文化造成的,因此西红柿会腐烂、变质,还会有斑点。相对于增加西红柿的质量被认为是具有传染性的,因此这种对番茄质量的损害是必要的,它可以为农场提供教育。这项研究是一项先进的研究,以对等stretching和sobel edge检测器为例。However,两种技术都是通过使用负图像操作来恢复的。最佳的特征是一种基于共同特征的形态和联系的组合。训练中KNN方法的准确程度是87%,而测试的准确程度是70%。Keywords: quality damage, tomato, feature selection, K-Nearest neighbors
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信