The Equation of the Set of Natural Numbers Just to Sum

Tulus Nadapdap, Tulus, Opim Salim
{"title":"The Equation of the Set of Natural Numbers Just to Sum","authors":"Tulus Nadapdap, Tulus, Opim Salim","doi":"10.52403/IJRR.20210547","DOIUrl":null,"url":null,"abstract":"Systems of equations of the form X = Y + Z and X = C, in which the unknowns are sets of integers,”+” denotes pairwise sum of sets S + T = m + n m S, n T , and C is an ultimately periodic constant. When restricted to sets of natural numbers, such equations can be equally seen as language equations over a one-letter alphabet with concatenation and regular constants, and it is shown that such systems are computationally universal, in the sense that for every recursive set S N there exists a system with a unique solution containing T with S = n 16n + 13 T. For systems over sets of all integers, both positive and negative, there is a similar construction of a system with a unique solution S = {n|16n ∈ T} representing any hyper-arithmetical set S ⊆ N.","PeriodicalId":14316,"journal":{"name":"International Journal of Research","volume":"88 1","pages":"379-388"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52403/IJRR.20210547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Systems of equations of the form X = Y + Z and X = C, in which the unknowns are sets of integers,”+” denotes pairwise sum of sets S + T = m + n m S, n T , and C is an ultimately periodic constant. When restricted to sets of natural numbers, such equations can be equally seen as language equations over a one-letter alphabet with concatenation and regular constants, and it is shown that such systems are computationally universal, in the sense that for every recursive set S N there exists a system with a unique solution containing T with S = n 16n + 13 T. For systems over sets of all integers, both positive and negative, there is a similar construction of a system with a unique solution S = {n|16n ∈ T} representing any hyper-arithmetical set S ⊆ N.
自然数的和的方程
形式为X = Y + Z和X = C的方程组,其中未知数是整数集,“+”表示集合S + T = m + n m S, n T的成对和,C是最终周期常数。当限制在自然数集合上时,这样的方程可以被看作是具有连接和正则常数的单字母字母表上的语言方程,并且证明了这样的系统在计算上是全称的,即对于每一个递归集合sn存在一个系统,其唯一解包含T, S = N 16n + 13 T。存在一个系统的类似构造,其唯一解S = {n|16n∈T}表示任何超算术集S∈n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信