Design of a beneficial product for newborn calves by combining Lactobacilli, minerals, and vitamins

N. C. Maldonado, C. Silva de Ruiz, M. Nader-Macías
{"title":"Design of a beneficial product for newborn calves by combining Lactobacilli, minerals, and vitamins","authors":"N. C. Maldonado, C. Silva de Ruiz, M. Nader-Macías","doi":"10.1080/10826068.2015.1128447","DOIUrl":null,"url":null,"abstract":"ABSTRACT Diarrhea is one of the most frequent diseases affecting newborn calves in intensive systems. Several strategies were proposed to protect and improve health, such as probiotics. This work was directed to design a product containing freeze-dried bacteria, vitamins, and minerals, as well as to optimize conditions with lyoprotectors, combine strains and add vitamins, minerals, and inulin to the product. The lyoprotectors were milk, milk-whey, and actose, and products were stored for 6 months at 4°C. Combined bacteria were freeze-dried in milk and the final products were added with minerals, vitamins, and insulin. The viable cells were determined by the plate count assay and antibiotic profiles to differentiate strains. Lactobacillus johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, L. salivarius CRL1702, L. amylovorus CRL1697, and Enterococcus faecium CRL1703 were evaluated. The optimal conditions were different for each strain. Milk and milk whey maintained the viability during the process and storage after 6 months for most of the strains, except for L. johnsonii. Lactose did not improve cell’s recovery. L. murinus was viable for 6 months in all the conditions, with similar results in enterococci. In strains combined before freeze-dried, the viability decreased deeply, showing that one-step process with bacteria mixtures, vitamins, and minerals were not adequate. Freeze-dried resistance depends on each strain and must be lyophilized individually.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2015.1128447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT Diarrhea is one of the most frequent diseases affecting newborn calves in intensive systems. Several strategies were proposed to protect and improve health, such as probiotics. This work was directed to design a product containing freeze-dried bacteria, vitamins, and minerals, as well as to optimize conditions with lyoprotectors, combine strains and add vitamins, minerals, and inulin to the product. The lyoprotectors were milk, milk-whey, and actose, and products were stored for 6 months at 4°C. Combined bacteria were freeze-dried in milk and the final products were added with minerals, vitamins, and insulin. The viable cells were determined by the plate count assay and antibiotic profiles to differentiate strains. Lactobacillus johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, L. salivarius CRL1702, L. amylovorus CRL1697, and Enterococcus faecium CRL1703 were evaluated. The optimal conditions were different for each strain. Milk and milk whey maintained the viability during the process and storage after 6 months for most of the strains, except for L. johnsonii. Lactose did not improve cell’s recovery. L. murinus was viable for 6 months in all the conditions, with similar results in enterococci. In strains combined before freeze-dried, the viability decreased deeply, showing that one-step process with bacteria mixtures, vitamins, and minerals were not adequate. Freeze-dried resistance depends on each strain and must be lyophilized individually.
结合乳酸菌、矿物质和维生素,设计一种对新生牛犊有益的产品
腹泻是集约化养殖系统中影响新生牛犊最常见的疾病之一。提出了几种保护和改善健康的策略,如益生菌。本工作旨在设计一种含有冻干细菌、维生素和矿物质的产品,并利用冻干保护剂优化条件,组合菌株并在产品中添加维生素、矿物质和菊粉。冻干保护剂为牛奶、乳清和乳糖,产品在4°C下保存6个月。混合细菌在牛奶中冷冻干燥,最终产品中加入矿物质、维生素和胰岛素。通过平板计数法和抗生素谱测定活细胞,以区分菌株。对约氏乳杆菌CRL1693、鼠乳杆菌CRL1695、粘膜乳杆菌CRL1696、唾液乳杆菌CRL1702、淀粉乳杆菌CRL1697和屎肠球菌CRL1703进行评价。不同菌种的最佳发酵条件不同。除约氏乳杆菌外,大多数菌株在加工和保存6个月后仍能保持牛奶和乳清的活力。乳糖不能促进细胞的恢复。L. murinus在所有条件下都能存活6个月,肠球菌也有类似的结果。在冻干前组合的菌株中,活力大大下降,表明用细菌混合物、维生素和矿物质一步处理是不够的。冻干抗性取决于每个菌株,必须单独冻干。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信