Stability of the planar rarefaction wave to three-dimensional full compressible Navier–Stokes–Poisson system

IF 0.5 4区 数学 Q3 MATHEMATICS
Yeping Li, Yujuan Chen, Zhengzheng Chen
{"title":"Stability of the planar rarefaction wave to three-dimensional full\n compressible Navier–Stokes–Poisson system","authors":"Yeping Li, Yujuan Chen, Zhengzheng Chen","doi":"10.1063/5.0137502","DOIUrl":null,"url":null,"abstract":"A full compressible Navier–Stokes–Poisson system models the motion of viscous ions under the effect of variable temperature and plays important roles in the study of self-gravitational viscous gaseous stars and in simulations of charged particles in semiconductor devices and plasmas physics. We establish the time-asymptotic nonlinear stability of a planar rarefaction wave to the initial value problem of a three-dimensional full compressible Navier–Stokes–Poisson equation when the initial data are a small perturbation of the planar rarefaction wave. The proof is given by a delicate energy method, which involves highly non-trivial a priori bounds due to the effect of the self-consistent electric field. This appears as the first result on the nonlinear stability of wave patterns to the full compressible Navier–Stokes–Poisson system in multi-dimensions.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0137502","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A full compressible Navier–Stokes–Poisson system models the motion of viscous ions under the effect of variable temperature and plays important roles in the study of self-gravitational viscous gaseous stars and in simulations of charged particles in semiconductor devices and plasmas physics. We establish the time-asymptotic nonlinear stability of a planar rarefaction wave to the initial value problem of a three-dimensional full compressible Navier–Stokes–Poisson equation when the initial data are a small perturbation of the planar rarefaction wave. The proof is given by a delicate energy method, which involves highly non-trivial a priori bounds due to the effect of the self-consistent electric field. This appears as the first result on the nonlinear stability of wave patterns to the full compressible Navier–Stokes–Poisson system in multi-dimensions.
平面稀疏波对三维全可压缩Navier-Stokes-Poisson系统的稳定性
一个完全可压缩的Navier-Stokes-Poisson系统模拟了粘性离子在变温度作用下的运动,在自引力粘性气体恒星的研究以及半导体器件和等离子体物理中带电粒子的模拟中起着重要作用。建立了三维全可压缩Navier-Stokes-Poisson方程初值问题的平面稀疏波的时间渐近非线性稳定性,当初始数据为平面稀疏波的小扰动时。该方法由于自洽电场的影响,涉及到高度非平凡的先验界。这是关于多维完全可压缩Navier-Stokes-Poisson系统的波型非线性稳定性的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信