{"title":"Device modelling of bendable MOS transistors","authors":"H. Heidari, W. Navaraj, G. Toldi, R. Dahiya","doi":"10.1109/ISCAS.2016.7527501","DOIUrl":null,"url":null,"abstract":"This paper presents the directions for computer aided design, modelling and simulation of bendable MOSFET transistors towards futuristic bendable ICs. In order to compensate the bending stress a generalised geometry variation is discussed. Based on drain-current and threshold-voltage parameters varying under the bending stress, a Verilog-A compact model is proposed and describes I-V characteristics of a MOSFET in a standard 0.18-μm CMOS technology. This model has been compiled into Cadence environment to predict value and orientation of the bending stress. The proposed model validates against macro-model simulation results, and agrees for both the electron and hole conduction. It has been found that there is significant performance advantage in process-induced uniaxial stressed n-MOSFET, exhibiting a smaller drain-current variation and thresh old voltage shift by monitoring the bending stress and changing the supply voltage.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"57 1","pages":"1358-1361"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents the directions for computer aided design, modelling and simulation of bendable MOSFET transistors towards futuristic bendable ICs. In order to compensate the bending stress a generalised geometry variation is discussed. Based on drain-current and threshold-voltage parameters varying under the bending stress, a Verilog-A compact model is proposed and describes I-V characteristics of a MOSFET in a standard 0.18-μm CMOS technology. This model has been compiled into Cadence environment to predict value and orientation of the bending stress. The proposed model validates against macro-model simulation results, and agrees for both the electron and hole conduction. It has been found that there is significant performance advantage in process-induced uniaxial stressed n-MOSFET, exhibiting a smaller drain-current variation and thresh old voltage shift by monitoring the bending stress and changing the supply voltage.