Antipalindromic numbers

L'ubomíra Dvoráková, Stanislav Kruml, David Ryzak
{"title":"Antipalindromic numbers","authors":"L'ubomíra Dvoráková, Stanislav Kruml, David Ryzak","doi":"10.14311/ap.2021.61.0428","DOIUrl":null,"url":null,"abstract":"Everybody has certainly heard about palindromes: words that stay the same when read backwards. For instance kayak, radar, or rotor. Mathematicians are interested in palindromic numbers: positive integers whose expansion in a certain integer base is a palindrome. The following problems are studied: palindromic primes, palindromic squares and higher powers, multibased palindromic numbers, etc. In this paper, we define and study antipalindromic numbers: positive integers whose expansion in a certain integer base is an antipalindrome. We present new results concerning divisibility and antipalindromic primes, antipalindromic squares and higher powers, and multibased antipalindromic numbers. We provide a user-friendly application for all studied questions.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"427 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2021.61.0428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Everybody has certainly heard about palindromes: words that stay the same when read backwards. For instance kayak, radar, or rotor. Mathematicians are interested in palindromic numbers: positive integers whose expansion in a certain integer base is a palindrome. The following problems are studied: palindromic primes, palindromic squares and higher powers, multibased palindromic numbers, etc. In this paper, we define and study antipalindromic numbers: positive integers whose expansion in a certain integer base is an antipalindrome. We present new results concerning divisibility and antipalindromic primes, antipalindromic squares and higher powers, and multibased antipalindromic numbers. We provide a user-friendly application for all studied questions.
Antipalindromic数字
每个人都听说过回文:倒读时保持不变的单词。例如皮艇,雷达,或转子。数学家对回文数很感兴趣:回文数是正整数,它在一定的整数基数上展开是回文。研究了回文素数、回文平方数和回文幂数、多基回文数等问题。本文定义并研究了反回文数:在一定整数基数上展开为反回文数的正整数。我们提出了关于可除性和反回文质数,反回文平方和更高幂,以及多基反回文数的新结果。我们为所有研究过的问题提供了一个用户友好的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信