Synthesis and Fragmentation Behavior Study of n-alkyl/benzyl Isatin Derivatives Present in Small/Complex Molecules: Precursor for the Preparation of Biological Active Heterocycles
{"title":"Synthesis and Fragmentation Behavior Study of n-alkyl/benzyl Isatin Derivatives Present in Small/Complex Molecules: Precursor for the Preparation of Biological Active Heterocycles","authors":"A. Kadi, Nasser S Al-Shakliah, A. M. Rahman","doi":"10.5478/MSL.2015.6.3.65","DOIUrl":null,"url":null,"abstract":"N-Alkyl/benzyl substituted isatin derivatives are intermediates and synthetic precursors for the preparation of biolog- ical active heterocycles. N-alkyl/benzyl isatins have showed various biological activities, such as cytotoxicity, antiviral, caspase inhibition, cannabinoid receptor 2 agonists for the treatment of neuropathic pain, etc. In this study, N-alkyl/benzyl isatin deriva- tives were synthesized from isatin and alkyl/benzyl halides in presence of K2CO3 in DMF and excellent to quantitative yields (~95%) were obtained. Isatins and benzyl-isatins were condensed with fluorescein hydrazide to form fluorescein hydrazone. All the compounds were subjected to their fragmentation behavior study using LC/MS n . N-Alkyl substituted isatin derivatives frag- mented at nitrogen-carbon (N-C) bond, hence gave daughter ion as (RN+H) + . Whereas, N-benzyl substituted isatin derivatives fragmented at carbon-carbon (C-C) bond of alkyl chain which linked with nitrogen molecules, therefore gave N-methyl frag- ments (RNCH2) + . This study demonstrated that, isatin moiety present in a small/large molecule or in a matrix of reaction mixture with/without N-alkyl/benzyl substituents can be identified by mass spectroscopic fragmentation behavior study.","PeriodicalId":18238,"journal":{"name":"Mass Spectrometry Letters","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5478/MSL.2015.6.3.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 2
Abstract
N-Alkyl/benzyl substituted isatin derivatives are intermediates and synthetic precursors for the preparation of biolog- ical active heterocycles. N-alkyl/benzyl isatins have showed various biological activities, such as cytotoxicity, antiviral, caspase inhibition, cannabinoid receptor 2 agonists for the treatment of neuropathic pain, etc. In this study, N-alkyl/benzyl isatin deriva- tives were synthesized from isatin and alkyl/benzyl halides in presence of K2CO3 in DMF and excellent to quantitative yields (~95%) were obtained. Isatins and benzyl-isatins were condensed with fluorescein hydrazide to form fluorescein hydrazone. All the compounds were subjected to their fragmentation behavior study using LC/MS n . N-Alkyl substituted isatin derivatives frag- mented at nitrogen-carbon (N-C) bond, hence gave daughter ion as (RN+H) + . Whereas, N-benzyl substituted isatin derivatives fragmented at carbon-carbon (C-C) bond of alkyl chain which linked with nitrogen molecules, therefore gave N-methyl frag- ments (RNCH2) + . This study demonstrated that, isatin moiety present in a small/large molecule or in a matrix of reaction mixture with/without N-alkyl/benzyl substituents can be identified by mass spectroscopic fragmentation behavior study.