{"title":"Development and Control of Generator-Converter Topology for Direct-Drive Wind Turbines","authors":"Akanksha Singh","doi":"10.5772/INTECHOPEN.85877","DOIUrl":null,"url":null,"abstract":"In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.