Stride History Image: A New Feature Representation for Pedestrian Identification

Shi Chen, Youxing Gao
{"title":"Stride History Image: A New Feature Representation for Pedestrian Identification","authors":"Shi Chen, Youxing Gao","doi":"10.1109/SIPS.2007.4387606","DOIUrl":null,"url":null,"abstract":"We describe representations of gait appearance features for the purpose of pedestrian identification. We construct two kinds of scalar valued spatiotemporal templates in 2D images, backward stride history image (bSHI) and forward stride history image (fSHI), to represent how change of pedestrian silhouettes is evolved. To define the stride length and ensure an invariant analysis due to differences in gait period, we perform a gait period estimation procedure using nonlinear analysis beforehand. We make use of a family of multi-layer windows to capture SHI image signature in the form of combined moment feature vectors for individual identification. The proposed approach achieves identification capability by an 86.56% CCR on Soton database and improvements are seen with respect to other methods.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"64 1","pages":"543-547"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We describe representations of gait appearance features for the purpose of pedestrian identification. We construct two kinds of scalar valued spatiotemporal templates in 2D images, backward stride history image (bSHI) and forward stride history image (fSHI), to represent how change of pedestrian silhouettes is evolved. To define the stride length and ensure an invariant analysis due to differences in gait period, we perform a gait period estimation procedure using nonlinear analysis beforehand. We make use of a family of multi-layer windows to capture SHI image signature in the form of combined moment feature vectors for individual identification. The proposed approach achieves identification capability by an 86.56% CCR on Soton database and improvements are seen with respect to other methods.
步幅历史图像:一种新的行人识别特征表示
为了行人识别,我们描述了步态外观特征的表示。我们在二维图像中构建了两种标量值时空模板,即后退步幅历史图像(bSHI)和前进步幅历史图像(fSHI),来表示行人轮廓的变化是如何演变的。为了确定步幅长度并确保步态周期差异的不变性分析,我们事先使用非线性分析进行了步态周期估计过程。我们利用一组多层窗口以组合矩特征向量的形式捕获SHI图像签名,用于个体识别。该方法在Soton数据库上的识别率达到了86.56%,与其他方法相比有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信