Generative machine learning for accelerated discovery of OLED materials

H. Abroshan, Shaun H. Kwak, Yuling An, C. Brown, M. Halls
{"title":"Generative machine learning for accelerated discovery of OLED materials","authors":"H. Abroshan, Shaun H. Kwak, Yuling An, C. Brown, M. Halls","doi":"10.1117/12.2598141","DOIUrl":null,"url":null,"abstract":"Development and characterization of novel OLED materials by traditional computational approaches are challenging owing to the complex factors that simultaneously influence the device performance. In this work, we will provide an overview of generative OLED materials discovery using the latest deep neural network formalism, and show an illustrative example to design novel OLED hole-transport materials. The outcome of the work will demonstrate the value of systematic and fundamental understanding of structure-property correlations that can lead to rational design of smart OLEDs with higher efficiency.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Light Emitting Materials and Devices XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2598141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Development and characterization of novel OLED materials by traditional computational approaches are challenging owing to the complex factors that simultaneously influence the device performance. In this work, we will provide an overview of generative OLED materials discovery using the latest deep neural network formalism, and show an illustrative example to design novel OLED hole-transport materials. The outcome of the work will demonstrate the value of systematic and fundamental understanding of structure-property correlations that can lead to rational design of smart OLEDs with higher efficiency.
由于同时影响器件性能的复杂因素,采用传统计算方法开发和表征新型OLED材料具有挑战性。在这项工作中,我们将使用最新的深度神经网络形式主义概述生成OLED材料的发现,并展示一个设计新型OLED空穴传输材料的说明性示例。这项工作的结果将证明对结构-性能相关性的系统和基本理解的价值,这可以导致更高效率的智能oled的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信