A time-dependent switching mean-field game on networks motivated by optimal visiting problems

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Fabio Bagagiolo, Luciano Marzufero
{"title":"A time-dependent switching mean-field game on networks motivated by optimal visiting problems","authors":"Fabio Bagagiolo, Luciano Marzufero","doi":"10.3934/jdg.2022019","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from <inline-formula><tex-math id=\"M1\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id=\"M2\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula> of one component of the string <inline-formula><tex-math id=\"M3\">\\begin{document}$ p = (p_1, \\ldots, p_n) $\\end{document}</tex-math></inline-formula> which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by <inline-formula><tex-math id=\"M4\">\\begin{document}$ i = 1, \\ldots, n $\\end{document}</tex-math></inline-formula>. The goal is to reach the final string <inline-formula><tex-math id=\"M5\">\\begin{document}$ (1, \\ldots, 1) $\\end{document}</tex-math></inline-formula> in the final time <inline-formula><tex-math id=\"M6\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula>-mean-field equilibrium and then address the passage to the limit when <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\"M9\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"78 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2022019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from \begin{document}$ 0 $\end{document} to \begin{document}$ 1 $\end{document} of one component of the string \begin{document}$ p = (p_1, \ldots, p_n) $\end{document} which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by \begin{document}$ i = 1, \ldots, n $\end{document}. The goal is to reach the final string \begin{document}$ (1, \ldots, 1) $\end{document} in the final time \begin{document}$ T $\end{document}, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated \begin{document}$ \varepsilon $\end{document}-mean-field equilibrium and then address the passage to the limit when \begin{document}$ \varepsilon $\end{document} goes to \begin{document}$ 0 $\end{document}.

基于最优访问问题的时变交换平均场博弈
Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable are at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from \begin{document}$ 0 $\end{document} to \begin{document}$ 1 $\end{document} of one component of the string \begin{document}$ p = (p_1, \ldots, p_n) $\end{document} which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by \begin{document}$ i = 1, \ldots, n $\end{document}. The goal is to reach the final string \begin{document}$ (1, \ldots, 1) $\end{document} in the final time \begin{document}$ T $\end{document}, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated \begin{document}$ \varepsilon $\end{document}-mean-field equilibrium and then address the passage to the limit when \begin{document}$ \varepsilon $\end{document} goes to \begin{document}$ 0 $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信