A lower bound for set-coloring Ramsey numbers.

Pub Date : 2024-03-01 Epub Date: 2023-08-03 DOI:10.1002/rsa.21173
Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris
{"title":"A lower bound for set-coloring Ramsey numbers.","authors":"Lucas Aragão, Maurício Collares, João Pedro Marciano, Taísa Martins, Robert Morris","doi":"10.1002/rsa.21173","DOIUrl":null,"url":null,"abstract":"<p><p>The set-coloring Ramsey number <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> is defined to be the minimum <math><mrow><mrow><mi>n</mi></mrow></mrow></math> such that if each edge of the complete graph <math><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mrow></math> is assigned a set of <math><mrow><mrow><mi>s</mi></mrow></mrow></math> colors from <math><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>r</mi><mo>}</mo></mrow></mrow></math>, then one of the colors contains a monochromatic clique of size <math><mrow><mrow><mi>k</mi></mrow></mrow></math>. The case <math><mrow><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></mrow></math> is the usual <math><mrow><mrow><mi>r</mi></mrow></mrow></math>-color Ramsey number, and the case <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mn>1</mn></mrow></mrow></math> was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general <math><mrow><mrow><mi>s</mi></mrow></mrow></math> were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><mi>k</mi><mi>r</mi><mo>)</mo></mrow></msup></mrow></mrow></math> if <math><mrow><mrow><mi>s</mi><mo>/</mo><mi>r</mi></mrow></mrow></math> is bounded away from 0 and 1. In the range <math><mrow><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mo>-</mo><mi>o</mi><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math>, however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine <math><mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math> up to polylogarithmic factors in the exponent for essentially all <math><mrow><mrow><mi>r</mi></mrow></mrow></math>, <math><mrow><mrow><mi>s</mi></mrow></mrow></math>, and <math><mrow><mrow><mi>k</mi></mrow></mrow></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The set-coloring Ramsey number Rr,s(k) is defined to be the minimum n such that if each edge of the complete graph Kn is assigned a set of s colors from {1,,r}, then one of the colors contains a monochromatic clique of size k. The case s=1 is the usual r-color Ramsey number, and the case s=r-1 was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general s were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k)=2Θ(kr) if s/r is bounded away from 0 and 1. In the range s=r-o(r), however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine Rr,s(k) up to polylogarithmic factors in the exponent for essentially all r, s, and k.

分享
查看原文
集色拉姆齐数的下限。
集合着色拉姆齐数 Rr,s(k)的定义是:如果完整图 Kn 的每条边都从 {1,...,r}中分配了一组 s 种颜色,则其中一种颜色包含大小为 k 的单色小块,那么最小 n 的集合着色拉姆齐数 Rr,s(k)。康伦、福克斯、何、穆巴伊、苏克和韦斯特拉特直到最近才首次获得关于一般 s 的重要结果,他们证明了如果 s/r 在 0 和 1 之间有界,则 Rr,s(k)=2Θ(kr)。在本说明中,我们引入了一种新的(随机)着色,并用它来确定 Rr,s(k),基本上所有 r、s 和 k 的指数都可以达到多对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信