{"title":"Effect of feeding supplemental copper on performance, fatty acid profile and on cholesterol contents and oxidative stability of meat of rabbits","authors":"V. Skřivanová, M. Skřivan, M. Marounek, M. Baran","doi":"10.1080/17450390109381989","DOIUrl":null,"url":null,"abstract":"One hundred and four rabbits, five weeks old at the beginning of the experiment, were divided into four groups according to a feed additive treatment. Rabbits of the 1st, 2nd, 3rd and 4th group were fed a basal granulated feed (control), basal feed supplemented with CuSO4 · 5H2O at 50mg Cu · kg‐1, basal feed supplemented with 150mg Cu · kg‐1, and the latter feed supplemented with 100mg · kg‐1 vitamin E, respectively. The duration of the experiment was 42 days. Addition of Cu at 150mg · kg.‐1 increased weight gain non‐significantly by 9.1%. This effect was the most pronounced in the first two weeks of fattening. The lowest mortality was observed in rabbits fed the highest amount of additives (7.7% vs. 19.2% in the control). Rabbits were slaughtered at the age of 11 weeks. Neither treatment influenced proportions of saturated, monounsaturated and polyunsaturated fatty acids in lipids extracted from the loin and hindleg muscles. In rabbits fed the highest amount of copper and vitamin E, the cholesterol concentration was significantly decreased by 13.6% and 17.9% in the loin and hindleg meat, respectively. Effects of Cu added at 50mg · kg‐1 were marginal. Copper had no effect on the oxidative stability of meat, measured as thiobarbituric acid‐reactive substances in meat stored at 4°C for 0, 3 and 8 days. Vitamin E added in excess of nutritional requirement improved the oxidative stability of meat. In copper‐fed rabbits, Cu accumulated in the liver, but not in muscles. Feeding of the basal feed for 7 days to rabbits previously fed copper sulphate decreased the hepatic Cu concentration by 14.0 to 24.4%","PeriodicalId":8141,"journal":{"name":"Archiv für Tierernaehrung","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv für Tierernaehrung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17450390109381989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
One hundred and four rabbits, five weeks old at the beginning of the experiment, were divided into four groups according to a feed additive treatment. Rabbits of the 1st, 2nd, 3rd and 4th group were fed a basal granulated feed (control), basal feed supplemented with CuSO4 · 5H2O at 50mg Cu · kg‐1, basal feed supplemented with 150mg Cu · kg‐1, and the latter feed supplemented with 100mg · kg‐1 vitamin E, respectively. The duration of the experiment was 42 days. Addition of Cu at 150mg · kg.‐1 increased weight gain non‐significantly by 9.1%. This effect was the most pronounced in the first two weeks of fattening. The lowest mortality was observed in rabbits fed the highest amount of additives (7.7% vs. 19.2% in the control). Rabbits were slaughtered at the age of 11 weeks. Neither treatment influenced proportions of saturated, monounsaturated and polyunsaturated fatty acids in lipids extracted from the loin and hindleg muscles. In rabbits fed the highest amount of copper and vitamin E, the cholesterol concentration was significantly decreased by 13.6% and 17.9% in the loin and hindleg meat, respectively. Effects of Cu added at 50mg · kg‐1 were marginal. Copper had no effect on the oxidative stability of meat, measured as thiobarbituric acid‐reactive substances in meat stored at 4°C for 0, 3 and 8 days. Vitamin E added in excess of nutritional requirement improved the oxidative stability of meat. In copper‐fed rabbits, Cu accumulated in the liver, but not in muscles. Feeding of the basal feed for 7 days to rabbits previously fed copper sulphate decreased the hepatic Cu concentration by 14.0 to 24.4%