Heterogeneous Integration of BEOL Logic and Memory in a Commercial Foundry: Multi-Tier Complementary Carbon Nanotube Logic and Resistive RAM at a 130 nm node

T. Srimani, G. Hills, M. Bishop, C. Lau, P. Kanhaiya, R. Ho, A. Amer, M. Chao, A. Yu, A. Wright, A. Ratkovich, D. Aguilar, A. Bramer, C. Cecman, A. Chov, G. Clark, G. Michaelson, M. Johnson, K. Kelley, P. Manos, K. Mi, U. Suriono, S. Vuntangboon, H. Xue, J. Humes, S. Soares, B. Jones, S. Burack, Arvind, A. Chandrakasan, B. Ferguson, M. Nelson, M. Shulaker
{"title":"Heterogeneous Integration of BEOL Logic and Memory in a Commercial Foundry: Multi-Tier Complementary Carbon Nanotube Logic and Resistive RAM at a 130 nm node","authors":"T. Srimani, G. Hills, M. Bishop, C. Lau, P. Kanhaiya, R. Ho, A. Amer, M. Chao, A. Yu, A. Wright, A. Ratkovich, D. Aguilar, A. Bramer, C. Cecman, A. Chov, G. Clark, G. Michaelson, M. Johnson, K. Kelley, P. Manos, K. Mi, U. Suriono, S. Vuntangboon, H. Xue, J. Humes, S. Soares, B. Jones, S. Burack, Arvind, A. Chandrakasan, B. Ferguson, M. Nelson, M. Shulaker","doi":"10.1109/VLSITechnology18217.2020.9265083","DOIUrl":null,"url":null,"abstract":"The inevitable slowing of two-dimensional scaling is motivating efforts to continue scaling along a new physical axis: the 3rd dimension. Here we report back-end-of-line (BEOL) integration of multi-tier logic and memory established within a commercial foundry. This is enabled by a low-temperature BEOL-compatible complementary carbon nanotube (CNT) field-effect transistor (CNFET) logic technology, alongside a BEOL-compatible Resistive RAM (RRAM) technology. All vertical layers are fabricated sequentially over the same starting substrate, using conventional BEOL nano-scale inter-layer vias (ILVs) as vertical interconnects (e.g., monolithic 3D integration, rather than chip-stacking and bonding). In addition, we develop the entire VLSI design infrastructure required for a foundry technology offering, including an industry-practice monolithic 3D process design kit (PDK) as well as a complete monolithic 3D standard cell library. The initial foundry process integrates 4 device tiers (2 tiers of complementary CNFET logic and 2 tiers of RRAM memory) with 15 metal layers at a ~130 nm technology node. We fabricate and experimentally validate the standard cell library across all monolithic 3D tiers, as well as a range of sub-systems including memories (BEOL SRAM, 1T1R memory arrays) as well as logic (including the compute core of a 16-bit microprocessor) - all of which is fabricated in the foundry within the BEOL interconnect stack. All fabrication is VLSI-compatible and leverages existing silicon CMOS infrastructure, and the entire design flow is compatible with existing commercial electronic design automation tools.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"121 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The inevitable slowing of two-dimensional scaling is motivating efforts to continue scaling along a new physical axis: the 3rd dimension. Here we report back-end-of-line (BEOL) integration of multi-tier logic and memory established within a commercial foundry. This is enabled by a low-temperature BEOL-compatible complementary carbon nanotube (CNT) field-effect transistor (CNFET) logic technology, alongside a BEOL-compatible Resistive RAM (RRAM) technology. All vertical layers are fabricated sequentially over the same starting substrate, using conventional BEOL nano-scale inter-layer vias (ILVs) as vertical interconnects (e.g., monolithic 3D integration, rather than chip-stacking and bonding). In addition, we develop the entire VLSI design infrastructure required for a foundry technology offering, including an industry-practice monolithic 3D process design kit (PDK) as well as a complete monolithic 3D standard cell library. The initial foundry process integrates 4 device tiers (2 tiers of complementary CNFET logic and 2 tiers of RRAM memory) with 15 metal layers at a ~130 nm technology node. We fabricate and experimentally validate the standard cell library across all monolithic 3D tiers, as well as a range of sub-systems including memories (BEOL SRAM, 1T1R memory arrays) as well as logic (including the compute core of a 16-bit microprocessor) - all of which is fabricated in the foundry within the BEOL interconnect stack. All fabrication is VLSI-compatible and leverages existing silicon CMOS infrastructure, and the entire design flow is compatible with existing commercial electronic design automation tools.
商业铸造厂中BEOL逻辑和存储器的异构集成:130纳米节点的多层互补碳纳米管逻辑和电阻式RAM
二维缩放的不可避免的放缓正在激励人们沿着新的物理轴继续缩放:三维。在这里,我们报告了在商业代工厂内建立的多层逻辑和存储器的后端线(BEOL)集成。这是通过低温兼容beol的互补碳纳米管(CNT)场效应晶体管(CNFET)逻辑技术,以及兼容beol的电阻式RAM (RRAM)技术实现的。所有垂直层都是在相同的衬底上顺序制造的,使用传统的BEOL纳米级层间通孔(ILVs)作为垂直互连(例如,单片3D集成,而不是芯片堆叠和键合)。此外,我们还开发了代工技术产品所需的整个VLSI设计基础设施,包括行业实践的单片3D工艺设计套件(PDK)以及完整的单片3D标准单元库。最初的代工工艺在约130纳米技术节点上集成了4层器件(2层互补CNFET逻辑和2层RRAM存储器)和15层金属层。我们制造并实验验证了所有单片3D层的标准单元库,以及一系列子系统,包括存储器(BEOL SRAM, 1T1R存储器阵列)以及逻辑(包括16位微处理器的计算核心)-所有这些都是在BEOL互连堆栈内的铸造厂制造的。所有制造都与vlsi兼容,并利用现有的硅CMOS基础设施,整个设计流程与现有的商业电子设计自动化工具兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信