O. Betzer, Yue Gao, Astar Shamul, M. Motiei, T. Sadan, R. Yehuda, Ayelet Atkins, C. Cohen, Mingwu Shen, Xiangyang Shi, R. Popovtzer
{"title":"Multifunctional nanoprobe for real-time in vivo monitoring of T cell activation.","authors":"O. Betzer, Yue Gao, Astar Shamul, M. Motiei, T. Sadan, R. Yehuda, Ayelet Atkins, C. Cohen, Mingwu Shen, Xiangyang Shi, R. Popovtzer","doi":"10.2139/ssrn.4094098","DOIUrl":null,"url":null,"abstract":"Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"99 1","pages":"102596"},"PeriodicalIF":4.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2139/ssrn.4094098","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.