{"title":"All-Inorganic Quantum Dot Nanocomposite for On-Chip LED Application","authors":"L. Zhang, C. Shen, R. An, C. Geng, J. Liu, S. Xu","doi":"10.1109/SSLChinaIFWS54608.2021.9675158","DOIUrl":null,"url":null,"abstract":"Quantum dots (QDs) have recently attracted intensive research interest with their advantage optical properties and easy processing in micro/mini-LED applications. However, integrating QDs into LED packaging still faces critical challenges of fluorescent quenching and thermal-induced degradation. In this report, we investigated the QDs concentration related fluorescent quenching and the positive role of light scatterers in light-conversion efficiency. A QDs/SiO2-BN inorganic assembly nanocomposite (QDAs) was fabricated, which provided enhanced light scattering, high thermal conductivity, and moisture protection for QDs under illumination. Optical and thermal simulations were employed to investigate the optical and thermal behavior of the QDAs in on-chip LED package. The QDs converted LED (QCLEDs) demonstrate much lower operation temperature accompanied with largely improved efficiency and long-term stability.","PeriodicalId":6816,"journal":{"name":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","volume":"58 1","pages":"100-104"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots (QDs) have recently attracted intensive research interest with their advantage optical properties and easy processing in micro/mini-LED applications. However, integrating QDs into LED packaging still faces critical challenges of fluorescent quenching and thermal-induced degradation. In this report, we investigated the QDs concentration related fluorescent quenching and the positive role of light scatterers in light-conversion efficiency. A QDs/SiO2-BN inorganic assembly nanocomposite (QDAs) was fabricated, which provided enhanced light scattering, high thermal conductivity, and moisture protection for QDs under illumination. Optical and thermal simulations were employed to investigate the optical and thermal behavior of the QDAs in on-chip LED package. The QDs converted LED (QCLEDs) demonstrate much lower operation temperature accompanied with largely improved efficiency and long-term stability.