PoseScript: 3D Human Poses from Natural Language

Ginger Delmas, Philippe Weinzaepfel, Thomas Lucas, F. Moreno-Noguer, Grégory Rogez
{"title":"PoseScript: 3D Human Poses from Natural Language","authors":"Ginger Delmas, Philippe Weinzaepfel, Thomas Lucas, F. Moreno-Noguer, Grégory Rogez","doi":"10.48550/arXiv.2210.11795","DOIUrl":null,"url":null,"abstract":"Natural language is leveraged in many computer vision tasks such as image captioning, cross-modal retrieval or visual question answering, to provide fine-grained semantic information. While human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. In this work, we introduce the PoseScript dataset, which pairs a few thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. To increase the size of this dataset to a scale compatible with typical data hungry learning algorithms, we propose an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information -- the posecodes -- using a set of simple but generic rules on the 3D keypoints. The posecodes are then combined into higher level textual descriptions using syntactic rules. Automatic annotations substantially increase the amount of available data, and make it possible to effectively pretrain deep models for finetuning on human captions. To demonstrate the potential of annotated poses, we show applications of the PoseScript dataset to retrieval of relevant poses from large-scale datasets and to synthetic pose generation, both based on a textual pose description.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.11795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Natural language is leveraged in many computer vision tasks such as image captioning, cross-modal retrieval or visual question answering, to provide fine-grained semantic information. While human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. In this work, we introduce the PoseScript dataset, which pairs a few thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. To increase the size of this dataset to a scale compatible with typical data hungry learning algorithms, we propose an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information -- the posecodes -- using a set of simple but generic rules on the 3D keypoints. The posecodes are then combined into higher level textual descriptions using syntactic rules. Automatic annotations substantially increase the amount of available data, and make it possible to effectively pretrain deep models for finetuning on human captions. To demonstrate the potential of annotated poses, we show applications of the PoseScript dataset to retrieval of relevant poses from large-scale datasets and to synthetic pose generation, both based on a textual pose description.
postscript:来自自然语言的3D人体姿势
自然语言在许多计算机视觉任务中被利用,如图像字幕、跨模态检索或视觉问答,以提供细粒度的语义信息。虽然人体姿势是人类理解的关键,但目前的3D人体姿势数据集缺乏详细的语言描述。在这项工作中,我们引入了PoseScript数据集,该数据集将来自AMASS的数千个3D人体姿势与丰富的人体部位及其空间关系的人类注释描述配对。为了将该数据集的大小增加到与典型的数据饥渴学习算法兼容的规模,我们提出了一个精心设计的字幕过程,该过程可以从给定的3D关键点生成自然语言的自动合成描述。这个过程使用一组简单但通用的3D关键点规则提取低级姿态信息。然后使用语法规则将这些叠码组合成更高级的文本描述。自动注释大大增加了可用数据的数量,并使有效地预训练深度模型以微调人类标题成为可能。为了展示姿势标注的潜力,我们展示了PoseScript数据集在从大规模数据集中检索相关姿势和合成姿势生成方面的应用,两者都基于文本姿势描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信