Depth-aware convolutional neural networks for accurate 3D pose estimation in RGB-D images

L. Porzi, Adrián Peñate Sánchez, E. Ricci, F. Moreno-Noguer
{"title":"Depth-aware convolutional neural networks for accurate 3D pose estimation in RGB-D images","authors":"L. Porzi, Adrián Peñate Sánchez, E. Ricci, F. Moreno-Noguer","doi":"10.1109/IROS.2017.8206469","DOIUrl":null,"url":null,"abstract":"Most recent approaches to 3D pose estimation from RGB-D images address the problem in a two-stage pipeline. First, they learn a classifier-typically a random forest-to predict the position of each input pixel on the object surface. These estimates are then used to define an energy function that is minimized w.r.t. the object pose. In this paper, we focus on the first stage of the problem and propose a novel classifier based on a depth-aware Convolutional Neural Network. This classifier is able to learn a scale-adaptive regression model that yields very accurate pixel-level predictions, allowing to finally estimate the pose using a simple RANSAC-based scheme, with no need to optimize complex ad hoc energy functions. Our experiments on publicly available datasets show that our approach achieves remarkable improvements over state-of-the-art methods.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"5777-5783"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Most recent approaches to 3D pose estimation from RGB-D images address the problem in a two-stage pipeline. First, they learn a classifier-typically a random forest-to predict the position of each input pixel on the object surface. These estimates are then used to define an energy function that is minimized w.r.t. the object pose. In this paper, we focus on the first stage of the problem and propose a novel classifier based on a depth-aware Convolutional Neural Network. This classifier is able to learn a scale-adaptive regression model that yields very accurate pixel-level predictions, allowing to finally estimate the pose using a simple RANSAC-based scheme, with no need to optimize complex ad hoc energy functions. Our experiments on publicly available datasets show that our approach achieves remarkable improvements over state-of-the-art methods.
深度感知卷积神经网络在RGB-D图像中精确的三维姿态估计
从RGB-D图像中估计3D姿态的最新方法在两阶段管道中解决了这个问题。首先,他们学习一个分类器——通常是一个随机森林——来预测每个输入像素在物体表面上的位置。然后使用这些估计来定义一个能量函数,该函数在物体姿态的基础上最小化。本文主要针对该问题的第一阶段,提出了一种基于深度感知卷积神经网络的分类器。该分类器能够学习一种尺度自适应回归模型,该模型产生非常精确的像素级预测,允许使用简单的基于ransac的方案最终估计姿势,而无需优化复杂的临时能量函数。我们在公开数据集上的实验表明,我们的方法比最先进的方法取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信