Global Weather-Based Trading Strategies

Ming Dong, A. Tremblay
{"title":"Global Weather-Based Trading Strategies","authors":"Ming Dong, A. Tremblay","doi":"10.2139/ssrn.3111467","DOIUrl":null,"url":null,"abstract":"We estimate the profitability of global index-level trading strategies formed on daily weather conditions across 49 countries. We use pre-market weather conditions (sunshine, wind, rain, snow, and temperature) and the statistical relationship between weather and returns to predict index returns each day. In the out-of-sample test for our 1993-2012 sample, a global weather-based hedge strategy produces a mean annual return of 15.2% compared to a mean world index return of 3.1%, corresponding to a Sharpe ratio of 0.462 relative to 0.005 for the world index. Our findings confirm that multiple weather conditions exert economically important impacts on stock returns around the globe.","PeriodicalId":10477,"journal":{"name":"Cognitive Social Science eJournal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Social Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3111467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We estimate the profitability of global index-level trading strategies formed on daily weather conditions across 49 countries. We use pre-market weather conditions (sunshine, wind, rain, snow, and temperature) and the statistical relationship between weather and returns to predict index returns each day. In the out-of-sample test for our 1993-2012 sample, a global weather-based hedge strategy produces a mean annual return of 15.2% compared to a mean world index return of 3.1%, corresponding to a Sharpe ratio of 0.462 relative to 0.005 for the world index. Our findings confirm that multiple weather conditions exert economically important impacts on stock returns around the globe.
全球天气交易策略
我们估计了全球指数级交易策略在49个国家的日常天气条件下形成的盈利能力。我们使用上市前的天气条件(日照、刮风、下雨、下雪和温度)以及天气和收益之间的统计关系来预测每天的指数收益。在我们1993-2012年样本的样本外测试中,基于全球天气的对冲策略的平均年回报率为15.2%,而世界指数的平均回报率为3.1%,对应的夏普比率为0.462,而世界指数的夏普比率为0.005。我们的研究结果证实,多种天气条件对全球股票回报产生重要的经济影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信