Hamidreza Abbaszadeh, R. Norouzi, Veli Sume, Alban Kuriqi, R. Daneshfaraz, J. Abraham
{"title":"Sill Role Effect on the Flow Characteristics (Experimental and Regression Model Analytical)","authors":"Hamidreza Abbaszadeh, R. Norouzi, Veli Sume, Alban Kuriqi, R. Daneshfaraz, J. Abraham","doi":"10.3390/fluids8080235","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of gate openings and different sill widths on the sluice gate’s energy dissipation and discharge coefficient (Cd). The physical model of the sills includes rectangular sills of different dimensions. The results show that the gate opening size is inversely related to the Cd for a gate without a sill. In addition, increasing the gate opening size for a given discharge decreases the relative energy dissipation, and increasing the Froude number increases the relative energy dissipation. The results also show that the Cd and relative energy dissipation decrease when the width of the sill is decreased, thus increasing the total area of the flux flowing through the sluice gate and vice versa. According to the experimental results, the relative energy dissipation and the Cd of the sluice gate are larger for all sill widths than without the sill. Finally, non-linear polynomial relationships are presented based on dimensionless parameters for predicting the relative energy dissipation and outflow coefficient.","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/fluids8080235","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of gate openings and different sill widths on the sluice gate’s energy dissipation and discharge coefficient (Cd). The physical model of the sills includes rectangular sills of different dimensions. The results show that the gate opening size is inversely related to the Cd for a gate without a sill. In addition, increasing the gate opening size for a given discharge decreases the relative energy dissipation, and increasing the Froude number increases the relative energy dissipation. The results also show that the Cd and relative energy dissipation decrease when the width of the sill is decreased, thus increasing the total area of the flux flowing through the sluice gate and vice versa. According to the experimental results, the relative energy dissipation and the Cd of the sluice gate are larger for all sill widths than without the sill. Finally, non-linear polynomial relationships are presented based on dimensionless parameters for predicting the relative energy dissipation and outflow coefficient.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.