E. Bortoletto, P. Venier, A. Figueras, B. Novoa, U. Rosani
{"title":"Evolutionary insights on a novel mussel-specific foot protein-3 gene family","authors":"E. Bortoletto, P. Venier, A. Figueras, B. Novoa, U. Rosani","doi":"10.25431/1824-307X/ISJ.V18I1.19-32","DOIUrl":null,"url":null,"abstract":"Silky byssus threads enable a number of marine and freshwater bivalve mollusks to attach themselves to hard substrates. Byssus production is an energy-costly process, which accompany the switch from planktonic to sessile life. Pointing the attention to a small foot protein (fp-3α) first identified in Perna viridis and abundantly secreted during the bissogenesis, we report the presence of a fp-3α gene family in species of the Mytilus complex, byssogenic bivalve mollusks mostly inhabiting marine waters. In the genome of Mytilus galloprovincialis we identified twelve fp-3α genes showing differences in exon-intron organization and suggesting that, as in the case of arthropod and mollusk defensins, exon shuffling could have played an important role in the evolution of this gene family. Also, the different tissue expression patterns of these mussel genes support their functional diversification. All predicted fp-3α proteins curiously possess a Csαβ three-dimensional motif based on 10 highly conserved cysteines and exhibit structural similarity to invertebrate defensins. The role of these small cysteine-rich proteins in supporting the byssus-mediated mussel adhesion or their action as host defence peptides remains to be established with further study.","PeriodicalId":14623,"journal":{"name":"ISJ-Invertebrate Survival Journal","volume":"156 1","pages":"19-32"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISJ-Invertebrate Survival Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.25431/1824-307X/ISJ.V18I1.19-32","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Silky byssus threads enable a number of marine and freshwater bivalve mollusks to attach themselves to hard substrates. Byssus production is an energy-costly process, which accompany the switch from planktonic to sessile life. Pointing the attention to a small foot protein (fp-3α) first identified in Perna viridis and abundantly secreted during the bissogenesis, we report the presence of a fp-3α gene family in species of the Mytilus complex, byssogenic bivalve mollusks mostly inhabiting marine waters. In the genome of Mytilus galloprovincialis we identified twelve fp-3α genes showing differences in exon-intron organization and suggesting that, as in the case of arthropod and mollusk defensins, exon shuffling could have played an important role in the evolution of this gene family. Also, the different tissue expression patterns of these mussel genes support their functional diversification. All predicted fp-3α proteins curiously possess a Csαβ three-dimensional motif based on 10 highly conserved cysteines and exhibit structural similarity to invertebrate defensins. The role of these small cysteine-rich proteins in supporting the byssus-mediated mussel adhesion or their action as host defence peptides remains to be established with further study.
期刊介绍:
Invertebrate Survival Journal (ISJ) is an international and open access journal devoted to prompt and innovative studies on the basic defense mechanisms in invertebrates, in particular with a view to identifying biotechnologies able to act against derived diseases and related economic damage.
Contributions will be mainly in the form of Letters to the Editor, Visions and Perspectives, Short Communications, Technical Reports, Research Reports, Review, Minireview and Reports of Meetings. Letters to the Editor can be commentaries or perspectives on invertebrate defence mechanisms or replies to the data published in ISJ.