Effects of Ga and In on the properties of Zn-Al sacrificial anodes

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junqi Shao, Fei Yang, Jian Wang, Shenghua Deng, Yongchao Liang, Hong-jin Zhao, Tongsheng Deng, Liang Xu
{"title":"Effects of Ga and In on the properties of Zn-Al sacrificial anodes","authors":"Junqi Shao, Fei Yang, Jian Wang, Shenghua Deng, Yongchao Liang, Hong-jin Zhao, Tongsheng Deng, Liang Xu","doi":"10.1080/02670836.2023.2231727","DOIUrl":null,"url":null,"abstract":"The influence of Ga and In on the microstructure and electrochemical performance of a Zn-Al alloy was investigated. It was found that the microstructure of the Zn-Al sacrificial anode can be significantly refined by Ga and In, but excess Ga or In leads to segregation. Electrochemical tests show that Zn-0.5Al-0.07 Ga and Zn-0.5Al-0.1In have the most negative OCPs, the corrosion products of which can easily flake off from the corroded surface, showing the good performance of cathodic protection. A small amount of Ga and In contribute to the corrosion of the Zn-Al alloy; however, excess Ga or In can improve the corrosion resistance of the alloy by refining the grains and making the surface of the oxide film form quickly.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2231727","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of Ga and In on the microstructure and electrochemical performance of a Zn-Al alloy was investigated. It was found that the microstructure of the Zn-Al sacrificial anode can be significantly refined by Ga and In, but excess Ga or In leads to segregation. Electrochemical tests show that Zn-0.5Al-0.07 Ga and Zn-0.5Al-0.1In have the most negative OCPs, the corrosion products of which can easily flake off from the corroded surface, showing the good performance of cathodic protection. A small amount of Ga and In contribute to the corrosion of the Zn-Al alloy; however, excess Ga or In can improve the corrosion resistance of the alloy by refining the grains and making the surface of the oxide film form quickly.
Ga和In对Zn-Al牺牲阳极性能的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信