Youssef Tliche, A. Taghipour, Jomana Mahfod-Leroux, Mohammadali Vosooghidizaji
{"title":"Collaborative Bullwhip Effect-Oriented Bi-Objective Optimization for Inference-Based Weighted Moving Average Forecasting in Decentralized Supply Chain","authors":"Youssef Tliche, A. Taghipour, Jomana Mahfod-Leroux, Mohammadali Vosooghidizaji","doi":"10.4018/ijisscm.316168","DOIUrl":null,"url":null,"abstract":"Downstream demand inference (DDI) emerged in the supply chain theory, allowing an upstream actor to infer the demand occurring at his formal downstream actor without need of information sharing. Literature showed that simultaneously minimizing the average inventory level and the bullwhip effect isn't possible. In this paper, the authors show that demand inference is not only possible between direct supply chain links, but also at any downstream level. The authors propose a bi-objective approach to reduce both performance indicators by adopting the genetic algorithm. Simulation results show that bullwhip effect can be reduced highly if specific configurations are selected from the Pareto frontier. Numerical results show that demand's time-series structure, lead-times, holding and shortage costs, don't affect the behaviour of the bullwhip effect indicator. Moreover, the sensitivity analysis show that the optimization approach is robust when faced to varied initializations. Finally, the authors conclude the paper with managerial implications in multi-level supply chains.","PeriodicalId":44506,"journal":{"name":"International Journal of Information Systems and Supply Chain Management","volume":"1 1","pages":"1-37"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Systems and Supply Chain Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisscm.316168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 3
Abstract
Downstream demand inference (DDI) emerged in the supply chain theory, allowing an upstream actor to infer the demand occurring at his formal downstream actor without need of information sharing. Literature showed that simultaneously minimizing the average inventory level and the bullwhip effect isn't possible. In this paper, the authors show that demand inference is not only possible between direct supply chain links, but also at any downstream level. The authors propose a bi-objective approach to reduce both performance indicators by adopting the genetic algorithm. Simulation results show that bullwhip effect can be reduced highly if specific configurations are selected from the Pareto frontier. Numerical results show that demand's time-series structure, lead-times, holding and shortage costs, don't affect the behaviour of the bullwhip effect indicator. Moreover, the sensitivity analysis show that the optimization approach is robust when faced to varied initializations. Finally, the authors conclude the paper with managerial implications in multi-level supply chains.
期刊介绍:
The International Journal of Information Systems and Supply Chain Management (IJISSCM) provides a practical and comprehensive forum for exchanging novel research ideas or down-to-earth practices which bridge the latest information technology and supply chain management. IJISSCM encourages submissions on how various information systems improve supply chain management, as well as how the advancement of supply chain management tools affects the information systems growth. The aim of this journal is to bring together the expertise of people who have worked with supply chain management across the world for people in the field of information systems.