NEURAL NETWORK AS AN APPROACH TO THE CLASSIFICATION OF UNASSIGNED LC-MS DATA IN PROTEOMETABOLOMICS

D. V. Petrovsky
{"title":"NEURAL NETWORK AS AN APPROACH TO THE CLASSIFICATION OF UNASSIGNED LC-MS DATA IN PROTEOMETABOLOMICS","authors":"D. V. Petrovsky","doi":"10.37747/2312-640x-2021-19-141-142","DOIUrl":null,"url":null,"abstract":"Proteomic (MASCOT, Andromeda, OMSSA, etc.) and metabolomic (Scripps, AMDIS, etc.) search algorithms for identification are limited to reference libraries and, as a result, a large amount of data is lost (modified proteins, isoforms). Bypassing the identification stage, you can significantly increase the amount of data for classification tasks. This makes it possible to successfully cluster the studied classes at the cost of information on molecular categorical predictors.","PeriodicalId":13077,"journal":{"name":"http://eng.biomos.ru/conference/articles.htm","volume":"337 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"http://eng.biomos.ru/conference/articles.htm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37747/2312-640x-2021-19-141-142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proteomic (MASCOT, Andromeda, OMSSA, etc.) and metabolomic (Scripps, AMDIS, etc.) search algorithms for identification are limited to reference libraries and, as a result, a large amount of data is lost (modified proteins, isoforms). Bypassing the identification stage, you can significantly increase the amount of data for classification tasks. This makes it possible to successfully cluster the studied classes at the cost of information on molecular categorical predictors.
神经网络作为蛋白质代谢组学中未分配lc-ms数据分类的方法
蛋白质组学(MASCOT, Andromeda, OMSSA等)和代谢组学(Scripps, AMDIS等)搜索算法的鉴定仅限于参考文库,导致大量数据丢失(修饰蛋白,同种异构体)。绕过标识阶段,可以显著增加用于分类任务的数据量。这使得以分子分类预测器的信息为代价成功地聚类所研究的类成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信