Improving collective decision accuracy via time-varying cross-inhibition

Mohamed S. Talamali, James A. R. Marshall, Thomas Bose, A. Reina
{"title":"Improving collective decision accuracy via time-varying cross-inhibition","authors":"Mohamed S. Talamali, James A. R. Marshall, Thomas Bose, A. Reina","doi":"10.1109/ICRA.2019.8794284","DOIUrl":null,"url":null,"abstract":"We investigate decentralised decision-making, in which a robot swarm is tasked with selecting the best-quality option among a set of alternatives. Individual robots are simplistic as they only perform diffusive search, make local noisy estimates of the options’ quality, and exchange information with near neighbours. We propose a decentralised algorithm, inspired by house-hunting honeybees, to efficiently aggregate noisy estimations. Individual robots, by varying over time a single decentralised parameter that modulates the interaction strength, balance exploration and agreement. In this way, the swarm first identifies the options under consideration, then rapidly converges on the best available option, even when outnumbered by lower quality options. We present stochastic analyses and swarm robotics simulations to compare the novel strategy with previous methods and to quantify the performance improvement. The proposed strategy limits the spreading of errors within the population and allows swarms of simple noisy units with minimal communication capabilities to make highly accurate collective decisions in predictable time.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"351 1","pages":"9652-9659"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We investigate decentralised decision-making, in which a robot swarm is tasked with selecting the best-quality option among a set of alternatives. Individual robots are simplistic as they only perform diffusive search, make local noisy estimates of the options’ quality, and exchange information with near neighbours. We propose a decentralised algorithm, inspired by house-hunting honeybees, to efficiently aggregate noisy estimations. Individual robots, by varying over time a single decentralised parameter that modulates the interaction strength, balance exploration and agreement. In this way, the swarm first identifies the options under consideration, then rapidly converges on the best available option, even when outnumbered by lower quality options. We present stochastic analyses and swarm robotics simulations to compare the novel strategy with previous methods and to quantify the performance improvement. The proposed strategy limits the spreading of errors within the population and allows swarms of simple noisy units with minimal communication capabilities to make highly accurate collective decisions in predictable time.
通过时变交叉抑制提高集体决策的准确性
我们研究了分散决策,其中一个机器人群的任务是在一组备选方案中选择最优质量的方案。单个机器人是简单的,因为它们只执行扩散搜索,对选项的质量进行局部噪声估计,并与附近的邻居交换信息。我们提出了一个分散的算法,灵感来自寻房蜜蜂,有效地汇总噪声估计。单个机器人,随着时间的推移,通过一个分散的参数来调节交互强度,平衡探索和协议。通过这种方式,蜂群首先确定正在考虑的选项,然后迅速收敛于最佳可用选项,即使在数量超过较低质量选项的情况下也是如此。我们采用随机分析和群体机器人模拟来比较新策略与以前的方法,并量化性能改进。所提出的策略限制了错误在种群中的传播,并允许具有最小通信能力的简单噪声单元群在可预测的时间内做出高度准确的集体决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信