The Use of Photographic Color Information for High-Throughput Phenotyping of Pigment Composition in Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N.Norris & Fredericq
W. Ryan, S. Heiser, M. Curtis, C. Amsler, T. Bayer, G. Bonthond, Gaoge Wang, F. Weinberger, S. A. Krueger‐Hadfield
{"title":"The Use of Photographic Color Information for High-Throughput Phenotyping of Pigment Composition in Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N.Norris & Fredericq","authors":"W. Ryan, S. Heiser, M. Curtis, C. Amsler, T. Bayer, G. Bonthond, Gaoge Wang, F. Weinberger, S. A. Krueger‐Hadfield","doi":"10.5252/cryptogamie-algologie2019v40a7","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pigment variation within and among algal species may have important ecological consequences because small changes in the concentration and composition of pigments can influence the photosynthetic efficiency and rate as well as the spectra of light utilized. Toward the goal of developing a rapid method for comparing pigment composition among algal thalli, we characterized the relationship between visual color information taken from photographs (e.g., red, green, and blue color values) and photopigment composition in the non-native red alga Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N.Norris & Fredericq. We used a set of 19 thalli, collected from across the known native and non-native range in the Northern Hemisphere, which exhibited substantial color variation at the time of field collection, and sustained this variation after being maintained in a common garden. We identified a set of ecologically interesting pigment traits that are readily predicted by color information, including chlorophyll a and phycobilin concentration. Finally, we demonstrated the repeatability of estimating color phenotypes from photographs of thalli taken under a range of light conditions in order to evaluate the utility of this approach for field studies. We suggest this method could be useful for the rapid, high-throughput phenotyping of photopigments in other red algae as well.","PeriodicalId":51000,"journal":{"name":"Cryptogamie Algologie","volume":"17 1","pages":"73 - 83"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptogamie Algologie","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5252/cryptogamie-algologie2019v40a7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Pigment variation within and among algal species may have important ecological consequences because small changes in the concentration and composition of pigments can influence the photosynthetic efficiency and rate as well as the spectra of light utilized. Toward the goal of developing a rapid method for comparing pigment composition among algal thalli, we characterized the relationship between visual color information taken from photographs (e.g., red, green, and blue color values) and photopigment composition in the non-native red alga Agarophyton vermiculophyllum (Ohmi) Gurgel, J.N.Norris & Fredericq. We used a set of 19 thalli, collected from across the known native and non-native range in the Northern Hemisphere, which exhibited substantial color variation at the time of field collection, and sustained this variation after being maintained in a common garden. We identified a set of ecologically interesting pigment traits that are readily predicted by color information, including chlorophyll a and phycobilin concentration. Finally, we demonstrated the repeatability of estimating color phenotypes from photographs of thalli taken under a range of light conditions in order to evaluate the utility of this approach for field studies. We suggest this method could be useful for the rapid, high-throughput phenotyping of photopigments in other red algae as well.
期刊介绍:
Cryptogamie is a fast-track and peer-reviewed journal of international scope publishing in English only. It accepts original papers and review articles on the taxonomy, biology and ecology of all cryptogams. An issue of Cryptogamie may be devoted to a single topic, under the responsibility of guest editor(s). All articles published in Cryptogamie are compliant with the different nomenclatural codes. A copyright assignment will be signed by the authors before publication.
Cryptogamie, Algologie accepts articles on systematics as well as ecology and evolution of any kind of algae (including Cyanobacteria).