Femtosecond laser direct writing of functional stimulus-responsive structures and applications

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Yuxuan Zhang, Dong Wu, Yachao Zhang, Yucheng Bian, Chaowei Wang, Jiawen Li, J. Chu, Yanlei Hu
{"title":"Femtosecond laser direct writing of functional stimulus-responsive structures and applications","authors":"Yuxuan Zhang, Dong Wu, Yachao Zhang, Yucheng Bian, Chaowei Wang, Jiawen Li, J. Chu, Yanlei Hu","doi":"10.1088/2631-7990/acf798","DOIUrl":null,"url":null,"abstract":"Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment. Inspired by nature, researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate. Among many fabrication methods for stimulus-responsive structures, femtosecond laser direct writing (FsLDW) has received increasing attention because of its high precision, simplicity, true three-dimensional machining ability, and wide applicability to almost all materials. This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW. Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies, different stimulating factors that can trigger structural responses of prepared intelligent structures, such as magnetic field, light, temperature, pH, and humidity, are emphatically summarized. Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW, as well as the present obstacles and forthcoming development opportunities, are discussed.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acf798","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse natural organisms possess stimulus-responsive structures to adapt to the surrounding environment. Inspired by nature, researchers have developed various smart stimulus-responsive structures with adjustable properties and functions to address the demands of ever-changing application environments that are becoming more intricate. Among many fabrication methods for stimulus-responsive structures, femtosecond laser direct writing (FsLDW) has received increasing attention because of its high precision, simplicity, true three-dimensional machining ability, and wide applicability to almost all materials. This paper systematically outlines state-of-the-art research on stimulus-responsive structures prepared by FsLDW. Based on the introduction of femtosecond laser-matter interaction and mainstream FsLDW-based manufacturing strategies, different stimulating factors that can trigger structural responses of prepared intelligent structures, such as magnetic field, light, temperature, pH, and humidity, are emphatically summarized. Various applications of functional structures with stimuli-responsive dynamic behaviors fabricated by FsLDW, as well as the present obstacles and forthcoming development opportunities, are discussed.
飞秒激光直写功能刺激响应结构及其应用
多种自然生物都具有刺激响应结构以适应周围环境。受大自然的启发,研究人员开发了各种具有可调节属性和功能的智能刺激响应结构,以满足日益复杂的不断变化的应用环境的需求。在众多刺激响应结构的制造方法中,飞秒激光直接写入(FsLDW)以其高精度、简单、真正的三维加工能力以及对几乎所有材料的广泛适用性而越来越受到人们的关注。本文系统地概述了FsLDW制备的刺激反应结构的最新研究进展。在介绍飞秒激光-物质相互作用和基于fslw的主流制造策略的基础上,重点总结了能触发所制备智能结构结构响应的不同刺激因素,如磁场、光、温度、pH和湿度。讨论了FsLDW制备的具有刺激响应动力学行为的功能结构的各种应用,以及目前的障碍和未来的发展机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信