COMPACT AND HILBERT–SCHMIDT WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES

IF 0.5 4区 数学 Q3 MATHEMATICS
Ching-on Lo, A. Loh
{"title":"COMPACT AND HILBERT–SCHMIDT WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES","authors":"Ching-on Lo, A. Loh","doi":"10.1017/S1446788722000039","DOIUrl":null,"url":null,"abstract":"Abstract Let u and \n$\\varphi $\n be two analytic functions on the unit disk D such that \n$\\varphi (D) \\subset D$\n . A weighted composition operator \n$uC_{\\varphi }$\n induced by u and \n$\\varphi $\n is defined on \n$A^2_{\\alpha }$\n , the weighted Bergman space of D, by \n$uC_{\\varphi }f := u \\cdot f \\circ \\varphi $\n for every \n$f \\in A^2_{\\alpha }$\n . We obtain sufficient conditions for the compactness of \n$uC_{\\varphi }$\n in terms of function-theoretic properties of u and \n$\\varphi $\n . We also characterize when \n$uC_{\\varphi }$\n on \n$A^2_{\\alpha }$\n is Hilbert–Schmidt. In particular, the characterization is independent of \n$\\alpha $\n when \n$\\varphi $\n is an automorphism of D. Furthermore, we investigate the Hilbert–Schmidt difference of two weighted composition operators on \n$A^2_{\\alpha }$\n .","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"404 1","pages":"208 - 225"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let u and $\varphi $ be two analytic functions on the unit disk D such that $\varphi (D) \subset D$ . A weighted composition operator $uC_{\varphi }$ induced by u and $\varphi $ is defined on $A^2_{\alpha }$ , the weighted Bergman space of D, by $uC_{\varphi }f := u \cdot f \circ \varphi $ for every $f \in A^2_{\alpha }$ . We obtain sufficient conditions for the compactness of $uC_{\varphi }$ in terms of function-theoretic properties of u and $\varphi $ . We also characterize when $uC_{\varphi }$ on $A^2_{\alpha }$ is Hilbert–Schmidt. In particular, the characterization is independent of $\alpha $ when $\varphi $ is an automorphism of D. Furthermore, we investigate the Hilbert–Schmidt difference of two weighted composition operators on $A^2_{\alpha }$ .
加权bergman空间上的紧和hilbert-schmidt加权复合算子
设u和$\varphi $为单位圆盘D上的两个解析函数,使得$\varphi (D) \subset D$。对于每一个$f \in A^2_{\alpha }$,在D的加权Bergman空间$A^2_{\alpha }$上,通过$uC_{\varphi }f := u \cdot f \circ \varphi $定义由u和$\varphi $诱导的加权复合算子$uC_{\varphi }$。利用u和$\varphi $的泛函性质,得到了$uC_{\varphi }$紧性的充分条件。我们还描述了$A^2_{\alpha }$上的$uC_{\varphi }$是Hilbert-Schmidt。特别地,当$\varphi $是d的自同构时,表征与$\alpha $无关。进一步,我们研究了$A^2_{\alpha }$上两个加权复合算子的Hilbert-Schmidt差分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信