Ryosuke Mikami, Hayaho Sato, Shogo Hayashi, H. Igarashi
{"title":"Multi-objective optimization of permanent magnet motors using deep learning and CMA-ES","authors":"Ryosuke Mikami, Hayaho Sato, Shogo Hayashi, H. Igarashi","doi":"10.3233/jae-230077","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective optimization method for permanent magnet motors using a fast optimization algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and deep learning. Multi-objective optimization with topology optimization is effective in the design of permanent magnet motors. Although CMA-ES needs fewer population size than genetic algorithm for single objective problems, this is not evident for multi-objective problems. For this reason, the proposed method generates training data by solving the single-objective optimization multiple times using CMA-ES, and constructs a deep neural network (NN) based on the data to predict performance from motor images at high speed. The deep NN is then used for fast solution of multi-objective optimization problems. Numerical examples demonstrate the effectiveness of the proposed method.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"22 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a multi-objective optimization method for permanent magnet motors using a fast optimization algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and deep learning. Multi-objective optimization with topology optimization is effective in the design of permanent magnet motors. Although CMA-ES needs fewer population size than genetic algorithm for single objective problems, this is not evident for multi-objective problems. For this reason, the proposed method generates training data by solving the single-objective optimization multiple times using CMA-ES, and constructs a deep neural network (NN) based on the data to predict performance from motor images at high speed. The deep NN is then used for fast solution of multi-objective optimization problems. Numerical examples demonstrate the effectiveness of the proposed method.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.