A Fingertip-Shaped Tactile Sensor with Machine-Learning-Based Sensor-To-Information Processing

J. Kuehn, Y. Manoli
{"title":"A Fingertip-Shaped Tactile Sensor with Machine-Learning-Based Sensor-To-Information Processing","authors":"J. Kuehn, Y. Manoli","doi":"10.1109/TRANSDUCERS.2019.8808413","DOIUrl":null,"url":null,"abstract":"We present a fingertip-shaped tactile sensor system that can measure static forces and slip vibrations using the same sensor. A fully integrated stress sensor ASIC leads to a simple design and assembly of the tactile fingertip. Instead of calibrating the fingertip to quantitatively measure forces, we use machine learning to extract abstract information out of the raw sensor data. Avoiding complex signal processing, this sensor-to-information processing scheme is fast and can have a small footprint. The results show that the system can classify the direction of applied forces with 99.8% accuracy. The combination of the stress sensor array and the machine learning approach allows to detect slip and tangential force direction simultaneously. The combined classification achieves 99.6% accuracy.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"410 1","pages":"1811-1814"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a fingertip-shaped tactile sensor system that can measure static forces and slip vibrations using the same sensor. A fully integrated stress sensor ASIC leads to a simple design and assembly of the tactile fingertip. Instead of calibrating the fingertip to quantitatively measure forces, we use machine learning to extract abstract information out of the raw sensor data. Avoiding complex signal processing, this sensor-to-information processing scheme is fast and can have a small footprint. The results show that the system can classify the direction of applied forces with 99.8% accuracy. The combination of the stress sensor array and the machine learning approach allows to detect slip and tangential force direction simultaneously. The combined classification achieves 99.6% accuracy.
一种基于机器学习的指尖型触觉传感器
我们提出了一个指尖形状的触觉传感器系统,可以测量静力和滑动振动使用相同的传感器。一个完全集成的应力传感器ASIC导致一个简单的设计和组装触觉指尖。我们不是通过校准指尖来定量测量力,而是使用机器学习从原始传感器数据中提取抽象信息。该方案避免了复杂的信号处理,速度快,占用空间小。结果表明,该系统能以99.8%的准确率对作用力方向进行分类。应力传感器阵列和机器学习方法的结合可以同时检测滑移和切向力方向。组合分类准确率达到99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信